skip to main content

This content will become publicly available on December 1, 2023

Title: Crossover of high-energy spin fluctuations from collective triplons to localized magnetic excitations in Sr14−xCaxCu24O41 ladders
Abstract We studied the magnetic excitations in the quasi-one-dimensional (q-1D) ladder subsystem of Sr 14−x Ca x Cu 24 O 41 (SCCO) using Cu L 3 -edge resonant inelastic X-ray scattering (RIXS). By comparing momentum-resolved RIXS spectra with high ( x  = 12.2) and without ( x  = 0) Ca content, we track the evolution of the magnetic excitations from collective two-triplon (2 T) excitations ( x  = 0) to weakly-dispersive gapped modes at an energy of 280 meV ( x  = 12.2). Density matrix renormalization group (DMRG) calculations of the RIXS response in the doped ladders suggest that the flat magnetic dispersion and damped excitation profile observed at x  = 12.2 originates from enhanced hole localization. This interpretation is supported by polarization-dependent RIXS measurements, where we disentangle the spin-conserving Δ S  = 0 scattering from the predominant Δ S  = 1 spin-flip signal in the RIXS spectra. The results show that the low-energy weight in the Δ S  = 0 channel is depleted when Sr is replaced by Ca, consistent with a reduced carrier mobility. Our results demonstrate that off-ladder impurities can affect both the low-energy magnetic excitations and superconducting correlations in the CuO 4 plaquettes. Finally, our study characterizes the magnetic and charge fluctuations in the phase from which superconductivity emerges in SCCO at elevated pressures.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
npj Quantum Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Resonant Inelastic X-Ray Scattering (RIXS) experiments on the iron-based ladder BaFe2Se3unveiled an unexpected two-peak structure associated with local orbital (dd) excitations in a block-type antiferromagnetic phase. A mixed character between correlated band-like and localized excitations was also reported. Here, we use the density matrix renormalization group method to calculate the momentum-resolved charge- and orbital-dynamical response functions of a multi-orbital Hubbard chain. Remarkably, our results qualitatively resemble the BaFe2Se3RIXS data, while also capturing the presence of long-range magnetic order as found in neutron scattering, only when the model is in an exotic orbital-selective Mott phase (OSMP). In the calculations, the experimentally observed zero-momentum transfer RIXS peaks correspond to excitations between itinerant and Mott insulating orbitals. We provide experimentally testable predictions for the momentum-resolved charge and orbital dynamical structures, which can provide further insight into the OSMP regime of BaFe2Se3.

    more » « less
  2. Abstract

    Excitonic insulators are usually considered to form via the condensation of a soft charge mode of bound electron-hole pairs. This, however, presumes that the soft exciton is of spin-singlet character. Early theoretical considerations have also predicted a very distinct scenario, in which the condensation of magnetic excitons results in an antiferromagnetic excitonic insulator state. Here we report resonant inelastic x-ray scattering (RIXS) measurements of Sr3Ir2O7. By isolating the longitudinal component of the spectra, we identify a magnetic mode that is well-defined at the magnetic and structural Brillouin zone centers, but which merges with the electronic continuum in between these high symmetry points and which decays upon heating concurrent with a decrease in the material’s resistivity. We show that a bilayer Hubbard model, in which electron-hole pairs are bound by exchange interactions, consistently explains all the electronic and magnetic properties of Sr3Ir2O7indicating that this material is a realization of the long-predicted antiferromagnetic excitonic insulator phase.

    more » « less
  3. null (Ed.)
    Resonant inelastic X-ray scattering (RIXS) is used increasingly for characterizing low-energy collective excitations inmaterials. RIXS is a powerful probe, which often requiressophisticated theoretical descriptions to interpret the data. Inparticular, the need for accurate theories describing the influence of electron-phonon (e-p) coupling on RIXS spectra is becoming timely, as instrument resolution improves and this energy regime is rapidly becoming accessible. To date, only rather exploratory theoretical work has beencarried out for such problems. We begin to bridge this gap byproposing a versatile variational approximation for calculating RIXS spectra in weakly doped materials, for a variety of models with diverse e-p couplings. Here, we illustrate some of its potential by studying the role of electron mobility, which is completely neglected in the widely used local approximation based on Lang-Firsov theory. Assuming that the e-p coupling is of the simplest, Holstein type, we discuss the regimes where the local approximation fails, and demonstrate that its improper use may grossly underestimate the e-p coupling strength. 
    more » « less
  4. null (Ed.)
    Context. Young open clusters (ages of less than 200 Myr) have been observed to exhibit several peculiarities in their chemical compositions. These anomalies include a slightly sub-solar iron content, super-solar abundances of some atomic species (e.g. ionised chromium), and atypical enhancements of [Ba/Fe], with values up to ~0.7 dex. Regarding the behaviour of the other s -process elements like yttrium, zirconium, lanthanum, and cerium, there is general disagreement in the literature: some authors claim that they follow the same trend as barium, while others find solar abundances at all ages. Aims. In this work we expand upon our previous analysis of a sample of five young open clusters (IC 2391, IC 2602, IC 4665, NGC 2516, and NGC 2547) and one star-forming region (NGC 2264), with the aim of determining abundances of different neutron-capture elements, mainly Cu  I , Sr  I , Sr  II , Y  II , Zr  II , Ba  II , La  II , and Ce  II . For NGC 2264 and NGC 2547 we present the measurements of these elements for the first time. Methods. We analysed high-resolution, high signal-to-noise spectra of 23 solar-type stars observed within the Gaia -ESO survey. After a careful selection, we derived abundances of isolated and clean lines via spectral synthesis computations and in a strictly differential way with respect to the Sun. Results. We find that our clusters have solar [Cu/Fe] within the uncertainties, while we confirm that [Ba/Fe] is super-solar, with values ranging from +0.22 to +0.64 dex. Our analysis also points to a mild enhancement of Y, with [Y/Fe] ratios covering values between 0 and +0.3 dex. For the other s -process elements we find that [X/Fe] ratios are solar at all ages. Conclusions. It is not possible to reconcile the anomalous behaviour of Ba and Y at young ages with standard stellar yields and Galactic chemical evolution model predictions. We explore different possible scenarios related to the behaviour of spectral lines, from the dependence on the different ionisation stages and the sensitivity to the presence of magnetic fields (through the Landé factor) to the first ionisation potential effect. We also investigate the possibility that they may arise from alterations of the structure of the stellar photosphere due to the increased levels of stellar activity that affect the spectral line formation, and consequently the derived abundances. These effects seem to be stronger in stars at ages of less than ~ 100 Myr. However, we are still unable to explain these enhancements, and the Ba puzzle remains unsolved. With the present study we suggest that other elements, for example Sr, Zr, La, and Ce, might be more reliable tracer of the s -process at young ages, and we strongly encourage further critical observations. 
    more » « less
  5. Abstract

    Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single‐molecule magnets (SMMs). Spin‐phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin‐phonon coupling in molecules is challenging. We have found that far‐IR magnetic spectra (FIRMS) of Co(PPh3)2X2(Co‐X; X=Cl, Br, I) reveal rarely observed spin‐phonon coupling as avoided crossings between magnetic andu‐symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero‐field split (ZFS) levels of theS=3/2 electronic ground state were probed by INS, high‐frequency and ‐field EPR (HFEPR), FIRMS, and frequency‐domain FT terahertz EPR (FD‐FT THz‐EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) andgvalues. Ligand‐field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities inCo‐X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin‐phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.

    more » « less