Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            In this paper we provide anO(mloglogO(1)nlog (1/ϵ))-expected time algorithm for solving Laplacian systems onn-nodem-edge graphs, improving upon the previous best expected runtime of\(O(m \sqrt {\log n} \mathrm{log log}^{O(1)} n \log (1/\epsilon)) \)achieved by (Cohen, Kyng, Miller, Pachocki, Peng, Rao, Xu 2014). To obtain this result we provide efficient constructions of low spectral stretch graph approximations with improved stretch and sparsity bounds. As motivation for this work, we show that for every set of vectors in\(\mathbb {R}^d \)(not just those induced by graphs) and all integerk> 1 there exist an ultra-sparsifier withd− 1 +O(d/k) re-weighted vectors of relative condition number at mostk2. For smallk, this improves upon the previous best known multiplicative factor of\(k \cdot \tilde{O}(\log d) \), which is only known for the graph case. Additionally, in the graph case we employ our low-stretch subgraph construction to obtainn− 1 +O(n/k)-edge ultrasparsifiers of relative condition numberk1 +o(1)fork=ω(log δn) for anyδ> 0: this improves upon the previous work fork=o(exp (log 1/2 −δn)).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available