skip to main content


Search for: All records

Award ID contains: 1845334

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.

     
    more » « less
  2. Numerous biodiversity–ecosystem functioning (BEF) experiments have shown that plant community productivity typically increases with species diversity. In these studies, diversity is generally quantified using metrics of taxonomic, phylogenetic, or functional differences among community members. Research has also shown that the relationships between species diversity and functioning depends on the spatial scale considered, primarily because larger areas may contain different ecosystem types and span gradients in environmental conditions, which result in a turnover of the species set present locally. A fact that has received little attention, however, is that ecological systems are hierarchically structured, from genes to individuals to communities to entire landscapes, and that additional biological variation occurs at levels of organization above and below those typically considered in BEF research. Here, we present cases of diversity effects at different hierarchical levels of organization and compare these to the species‐diversity effects traditionally studied. We argue that when this evidence is combined across levels, a general framework emerges that allows the transfer of insights and concepts between traditionally disparate disciplines. Such a framework presents an important step towards a better understanding of the functional importance of diversity in complex, real‐world systems. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available December 1, 2024
  5. Biodiversity changes, such as decline in species richness and biotic homogenization, can have grave consequences for ecosystem functionality. Careful investigation of biodiversity–ecosystem multifunctionality linkages with due consideration of conceptual and technical challenges is required to make the knowledge practically useful in managing social–ecological systems. In this paper, we introduced different methods to assess perspectives regarding the issue of diversity‐multifunctionality, including a possible multifunctional redundancy/uniqueness, and the influences of the number and identity of functions on multifunctionality. In particular, we aimed to align methods with detecting the mechanisms underpinning diversity‐multifunctional relationships that are free from statistical biases. Based on a set of novel methods that excluded analytical biases resulting from differences in the number and identities of multiple functions considered, we found that a substantial portion of species disproportionately supported ecosystem functions and that the diversity effects on multifunctionality were more markedly observed when more functions were considered. These results jointly emphasize that individual species are, to some extent, both functionally unique as well as redundant, highlighting the complexity and necessity for managed assemblages to retain high levels of diversity. We also observed that the relative magnitude of uniqueness or redundancy can differ between species and functions and therefore should be defined in a multifunctional context. We further found that only a small subset of species was identified as significantly less important, especially at low levels of multifunctionality. Taken together, given the low level of multifunctional redundancy we identified, we stress that unraveling the hierarchical roles of biodiversity at different levels, such as individual species and their assemblages, should be a high research priority, in both theory and practice. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  6. Abstract Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals. 
    more » « less
  7. Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them. 
    more » « less
  8. null (Ed.)