This content will become publicly available on September 1, 2023
A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models
Abstract Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.
- Award ID(s):
- 1845334
- Publication Date:
- NSF-PAR ID:
- 10396655
- Journal Name:
- BioScience
- Volume:
- 72
- Issue:
- 11
- Page Range or eLocation-ID:
- 1062 to 1073
- ISSN:
- 0006-3568
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Introduction: As challenges to biodiversity mount, land-use policies have been implemented to balance human needs and the integrity of ecological systems. One such program, Payments for Ecosystem Services (PES), incentivizes resource users to protect ecosystem services and has been implemented around the world to reduce soil erosion, create or improve wildlife habitats, and improve water quality and other environmental goals. The PES policy, at its core, is a concept that aims to capture the reciprocal relationships between human systems and ecological function and process. As such, PES epistemologically embodies a coupled human and natural systems approach.Outcomes: Yet, despite this conceptual alignment, the on-the-ground implementation or evaluation of PES typically does not adopt this coupled approach and PES programs have little integration between socioeconomic, sociocultural, human demographic, and ecological elements. To advance the evolution of PES, we consider what and how socioeconomic and ecological factors have been incorporated into PES program implementation and evaluation. We also present a conceptual model to articulate how PES research can capture the reciprocal relationships among socioeconomics, demography, and ecology and discuss the quantitative modeling approaches that can support this conceptual development, i.e., structural equation and agent-based modeling, and latent trajectory models.Conclusions: By strengthening the conceptualmore » -
Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them.
-
The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »
-
Abstract. Systematic long-term studies on ecosystem dynamics are largely lacking from the East Antarctic Southern Ocean, although it is well recognized that they are indispensable to identify the ecological impacts and risks of environmental change. Here, we present a framework for establishing a long-term cross-disciplinary study on decadal timescales. We argue that the eastern Weddell Sea and the adjacent sea to the east, off Dronning Maud Land, is a particularly well suited area for such a study, since it is based on findings from previous expeditions to this region. Moreover, since climate and environmental change have so far been comparatively muted in this area, as in the eastern Antarctic in general, a systematic long-term study of its environmental and ecological state can provide a baseline of the current situation, which will be important for an assessment of future changes from their very onset, with consistent and comparable time series data underpinning and testing models and their projections. By establishing an Integrated East Antarctic Marine Research (IEAMaR) observatory, long-term changes in ocean dynamics, geochemistry, biodiversity, and ecosystem functions and services will be systematically explored and mapped through regular autonomous and ship-based synoptic surveys. An associated long-term ecological research (LTER) programme, includingmore »
-
Agricultural landscapes in North America have developed through complex interactions of biophysical, socioeconomic and technological forces. While they can be highly productive, these landscapes are increasingly simplified, causing biodiversity loss. As a result, ecosystem services associated with biodiversity are being dismantled. Agricultural landscape structure arises from collective decisions of farmers over long time periods, which are usually not intentionally coordinated beyond the farm scale. Regaining ecosystem services will require active efforts to intentionally redesign landscapes, in part based on ecological evidence about relationships between landscape structure and ecosystem services. Here we focus on services provided by arthropods and how to foster them at landscape scales. We first provide a brief history of how agricultural landscape structure in temperate North America developed and review the landscape-scale ecological drivers underpinning arthropod-based ecosystem services. We then propose ecological and social principles for designing agricultural landscapes, based on the ecological evidence we reviewed and on previous efforts in agricultural landscape design. Finally, we look ahead to discern prospects for putting agricultural landscape design into practice, including ecological, technological and policy opportunities. To reap benefits from arthropod-based services, future agricultural landscapes will need to increase in structural heterogeneity and diversity across multiple dimensions including crop,more »