skip to main content


Title: A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models
Abstract Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.  more » « less
Award ID(s):
1845334
NSF-PAR ID:
10396655
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
72
Issue:
11
ISSN:
0006-3568
Page Range / eLocation ID:
1062 to 1073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Introduction:As challenges to biodiversity mount, land-use policies have been implemented to balance human needs and the integrity of ecological systems. One such program, Payments for Ecosystem Services (PES), incentivizes resource users to protect ecosystem services and has been implemented around the world to reduce soil erosion, create or improve wildlife habitats, and improve water quality and other environmental goals. The PES policy, at its core, is a concept that aims to capture the reciprocal relationships between human systems and ecological function and process. As such, PES epistemologically embodies a coupled human and natural systems approach.

    Outcomes:Yet, despite this conceptual alignment, the on-the-ground implementation or evaluation of PES typically does not adopt this coupled approach and PES programs have little integration between socioeconomic, sociocultural, human demographic, and ecological elements. To advance the evolution of PES, we consider what and how socioeconomic and ecological factors have been incorporated into PES program implementation and evaluation. We also present a conceptual model to articulate how PES research can capture the reciprocal relationships among socioeconomics, demography, and ecology and discuss the quantitative modeling approaches that can support this conceptual development, i.e., structural equation and agent-based modeling, and latent trajectory models.

    Conclusions:By strengthening the conceptual framework for PES within a coupled human and natural systems approach and identifyinganalytical approaches that can be used to quantify and characterize these complex cross-disciplinary relationships, we aim to support the evolution and advancement of PES, in service of more meaningful and positive outcomes for human well-being and ecological sustainability.

     
    more » « less
  2. Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them. 
    more » « less
  3. Abstract

    Smallholder farmers are some of the poorest and most food insecure people on Earth. Their high nutritional and economic reliance on home‐grown produce makes them particularly vulnerable to environmental stressors such as pollinator loss or climate change which threaten agricultural productivity. Improving smallholder agriculture in a way that is environmentally sustainable and resilient to climate change is a key challenge of the 21st century.

    Ecological intensification, whereby ecosystem services are managed to increase agricultural productivity, is a promising solution for smallholders. However, smallholder farms are complex socio‐ecological systems with a range of social, ecological and environmental factors interacting to influence ecosystem service provisioning. To truly understand the functioning of a smallholder farm and identify the most effective management options to support household food and nutrition security, a holistic, systems‐based understanding is required.

    In this paper, we propose a network approach to understand, visualise and model the complex interactions occurring among wild species, crops and people on smallholder farms. Specifically, we demonstrate how networks may be used to (a) identify wild species with a key role in supporting, delivering or increasing the resilience of an ecosystem service; (b) quantify the value of an ecosystem service in a way that is relevant to the food and nutrition security of smallholders; and (c) understand the social interactions that influence the management of shared ecosystem services.

    Using a case study based on data from rural Nepal, we demonstrate how this framework can be used to connect wild plants, pollinators and crops to key nutrients consumed by humans. This allows us to quantify the nutritional value of an ecosystem service and identify the wild plants and pollinators involved in its provision, as well as providing a framework to predict the effects of environmental change on human nutrition.

    Our framework identifies mechanistic links between ecosystem services and the nutrients consumed by smallholder farmers and highlights social factors that may influence the management of these services. Applying this framework to smallholder farms in a range of socio‐ecological contexts may provide new, sustainable and equitable solutions to smallholder food and nutrition security.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Abstract

    As demand for wood products increases in step with global population growth, balancing the potentially competing values of biodiversity conservation, carbon storage and timber production is a major challenge. Land sparing involves conserving forest while growing timber in intensively managed areas. On the other hand, land sharing utilizes ecological forestry approaches, but with a larger management footprint due to lower yields. While the sparing‐sharing framework has been widely tested and debated in agricultural settings to balance competing values, such land‐allocation strategies have been rarely studied in forestry.

    We examined whether a sparing, sharing or Triad strategy best achieves multiple forest objectives simultaneously. In Triad, management units (stands) in forest landscapes are allocated to one of three treatments: reserve (where conservation is the sole objective), intensive (timber production is the sole objective) and ecological (both objectives are combined). To our knowledge, ours is the first Triad study from the temperate zone to quantify direct measures of biodiversity (e.g. species' abundance).

    Using a commonly utilized forest planning tool parameterized with empirical data, we modelled the capacity of a temperate rainforest to provide multiple ecosystem services (biodiversity, carbon storage, timber production and old‐growth forest structure) over 125 years based on 43 different allocation scenarios. We then quantified trade‐offs between scenarios, taking into account the landscape structure, and determined which strategies most consistently balanced ecosystem services.

    Sparing strategies were best when the services provided by both old‐growth and early seral (young) forests were prioritized, but at a cost to species associated with mid‐seral stages, which benefitted most from Triad and sharing strategies. Therefore, sparing provides the greatest net benefit, particularly given that old‐growth‐associated species and ecosystem services are currently of the greatest conservation concern.

    Synthesis and applications. We found that maximizing multiple elements of biodiversity and ecosystem services simultaneously with a single management strategy was elusive. The strategy that maximized each service and species varied greatly by both the service and the level of timber production. Fortunately, a diversity of management options can produce the same wood supply, providing ample decision space for establishing priorities and evaluating trade‐offs.

     
    more » « less
  5. Summary

    Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries.

    This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.

     
    more » « less