skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1845434

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The visual analytics community has long aimed to understand users better and assist them in their analytic endeavors. As a result, numerous conceptual models of visual analytics aim to formalize common workflows, techniques, and goals leveraged by analysts. While many of the existing approaches are rich in detail, they each are specific to a particular aspect of the visual analytic process. Furthermore, with an ever‐expanding array of novel artificial intelligence techniques and advances in visual analytic settings, existing conceptual models may not provide enough expressivity to bridge the two fields. In this work, we propose an agent‐based conceptual model for the visual analytic process by drawing parallels from the artificial intelligence literature. We present three examples from the visual analytics literature as case studies and examine them in detail using our framework. Our simple yet robust framework unifies the visual analytic pipeline to enable researchers and practitioners to reason about scenarios that are becoming increasingly prominent in the field, namely mixed‐initiative, guided, and collaborative analysis. Furthermore, it will allow us to characterize analysts, visual analytic settings, and guidance from the lenses of human agents, environments, and artificial agents, respectively. 
    more » « less
  2. Free, publicly-accessible full text available December 14, 2025
  3. Stability prediction is accelerated by treating the convex hull as a probabilistic object, allowing for an efficient active learning process that minimizes the number of thermodynamic calculations necessary to define the convex hull. 
    more » « less
  4. Abstract We present a hierarchical Dirichlet regression model with Gaussian process priors that enables accurate and well-calibrated forecasts for U.S. Senate elections at varying time horizons. This Bayesian model provides a balance between predictions based on time-dependent opinion polls and those made based on fundamentals. It also provides uncertainty estimates that arise naturally from historical data on elections and polls. Experiments show that our model is highly accurate and has a well calibrated coverage rate for vote share predictions at various forecasting horizons. We validate the model with a retrospective forecast of the 2018 cycle as well as a true out-of-sample forecast for 2020. We show that our approach achieves state-of-the art accuracy and coverage despite relying on few covariates. 
    more » « less