skip to main content


Search for: All records

Award ID contains: 1845967

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    The phylogenetic signal of structural variation informs a more comprehensive understanding of evolution. As (near-)complete genome assembly becomes more commonplace, the next methodological challenge for inferring genome rearrangement trees is the identification of syntenic blocks of orthologous sequences. In this article, we studied 94 reference quality genomes of primarily Mycobacterium tuberculosis (Mtb) isolates as a benchmark to evaluate these methods. The clonal nature of Mtb evolution, the manageable genome sizes, along with substantial levels of structural variation make this an ideal benchmarking dataset.

    Results

    We tested several methods for detecting homology and obtaining syntenic blocks and two methods for inferring phylogenies from them, then compared the resulting trees to the standard method’s tree, inferred from nucleotide substitutions. We found that, not only the choice of methods, but also their parameters can impact results, and that the tree inference method had less impact than the block determination method. Interestingly, a rearrangement tree based on blocks from the Cactus whole-genome aligner was fully compatible with the highly supported branches of the substitution-based tree, enabling the combination of the two into a high-resolution supertree. Overall, our results indicate that accurate trees can be inferred using genome rearrangements, but the choice of the methods for inferring homology requires care.

    Availability and implementation

    Analysis scripts and code written for this study are available at https://gitlab.com/LPCDRP/rearrangement-homology.pub and https://gitlab.com/LPCDRP/syntement.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Motivation

    Species tree inference from multi-copy gene trees has long been a challenge in phylogenomics. The recent method ASTRAL-Pro has made strides by enabling multi-copy gene family trees as input and has been quickly adopted. Yet, its scalability, especially memory usage, needs to improve to accommodate the ever-growing dataset size.

    Results

    We present ASTRAL-Pro 2, an ultrafast and memory efficient version of ASTRAL-Pro that adopts a placement-based optimization algorithm for significantly better scalability without sacrificing accuracy.

    Availability and implementation

    The source code and binary files are publicly available at https://github.com/chaoszhang/ASTER; data are available at https://github.com/chaoszhang/A-Pro2_data.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract

    Summary: While alignment has been the dominant approach for determining homology prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore, alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of sequence evolution such as Jukes–Cantor. If we can estimate frequencies of base substitutions in an alignment-free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA sequences is unknown for many forms of genome-wide data, which arguably present the best use case for alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer mismatches after replacement due to random chance as opposed to homology. We show in simulation that alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the accuracy on assembled and unassembled biological data.

    Availability and implementation

    Our software is available open source at https://github.com/nishatbristy007/NSB.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less
  4. Abstract Motivation

    Phylogenomics faces a dilemma: on the one hand, most accurate species and gene tree estimation methods are those that co-estimate them; on the other hand, these co-estimation methods do not scale to moderately large numbers of species. The summary-based methods, which first infer gene trees independently and then combine them, are much more scalable but are prone to gene tree estimation error, which is inevitable when inferring trees from limited-length data. Gene tree estimation error is not just random noise and can create biases such as long-branch attraction.

    Results

    We introduce a scalable likelihood-based approach to co-estimation under the multi-species coalescent model. The method, called quartet co-estimation (QuCo), takes as input independently inferred distributions over gene trees and computes the most likely species tree topology and internal branch length for each quartet, marginalizing over gene tree topologies and ignoring branch lengths by making several simplifying assumptions. It then updates the gene tree posterior probabilities based on the species tree. The focus on gene tree topologies and the heuristic division to quartets enables fast likelihood calculations. We benchmark our method with extensive simulations for quartet trees in zones known to produce biased species trees and further with larger trees. We also run QuCo on a biological dataset of bees. Our results show better accuracy than the summary-based approach ASTRAL run on estimated gene trees.

    Availability and implementation

    QuCo is available on https://github.com/maryamrabiee/quco.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    As genome-wide reconstruction of phylogenetic trees becomes more widespread, limitations of available data are being appreciated more than ever before. One issue is that phylogenomic datasets are riddled with missing data, and gene trees, in particular, almost always lack representatives from some species otherwise available in the dataset. Since many downstream applications of gene trees require or can benefit from access to complete gene trees, it will be beneficial to algorithmically complete gene trees. Also, gene trees are often unrooted, and rooting them is useful for downstream applications. While completing and rooting a gene tree with respect to a given species tree has been studied, those problems are not studied in depth when we lack such a reference species tree.

    Results

    We study completion of gene trees without a need for a reference species tree. We formulate an optimization problem to complete the gene trees while minimizing their quartet distance to the given set of gene trees. We extend a seminal algorithm by Brodal et al. to solve this problem in quasi-linear time. In simulated studies and on a large empirical data, we show that completion of gene trees using other gene trees is relatively accurate and, unlike the case where a species tree is available, is unbiased.

    Availability and implementation

    Our method, tripVote, is available at https://github.com/uym2/tripVote.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  6. Abstract

    Placing new sequences onto reference phylogenies is increasingly used for analyzing environmental samples, especially microbiomes. Existing placement methods assume that query sequences have evolved under specific models directly on the reference phylogeny. For example, they assume single-gene data (e.g., 16S rRNA amplicons) have evolved under the GTR model on a gene tree. Placement, however, often has a more ambitious goal: extending a (genome-wide) species tree given data from individual genes without knowing the evolutionary model. Addressing this challenging problem requires new directions. Here, we introduce Deep-learning Enabled Phylogenetic Placement (DEPP), an algorithm that learns to extend species trees using single genes without prespecified models. In simulations and on real data, we show that DEPP can match the accuracy of model-based methods without any prior knowledge of the model. We also show that DEPP can update the multilocus microbial tree-of-life with single genes with high accuracy. We further demonstrate that DEPP can combine 16S and metagenomic data onto a single tree, enabling community structure analyses that take advantage of both sources of data. [Deep learning; gene tree discordance; metagenomics; microbiome analyses; neural networks; phylogenetic placement.]

     
    more » « less
  7. Abstract

    Erroneous data can creep into sequence datasets for reasons ranging from contamination to annotation and alignment mistakes and reduce the accuracy of downstream analyses. As datasets keep getting larger, it has become difficult to check multiple sequence alignments visually for errors, and thus, automatic error detection methods are needed more than ever before. Alignment masking methods, which are widely used, remove entire aligned sites and may reduce signal as much as or more than they reduce the noise.

    The alternative we propose here is a surprisingly under‐explored approach: looking for errors in small species‐specific stretches of the multiple sequence alignments. We introduce a method called TAPER that uses a novel two‐dimensional outlier detection algorithm. Importantly, TAPER adjusts its null expectations per site and species, and in doing so, it attempts to distinguish the real heterogeneity (signal) from errors (noise).

    Our results show that TAPER removes very little data yet finds much of the error. The effectiveness of TAPER depends on several properties of the alignment (e.g. evolutionary divergence levels) and the errors (e.g. their length).

    By enabling data clean up with minimal loss of signal, TAPER can improve downstream analyses such as phylogenetic reconstruction and selection detection. Data errors, small or large, can reduce confidence in the downstream results, and thus, eliminating them can be beneficial even when downstream analyses are not impacted.

     
    more » « less
  8. Abstract Motivation

    Learning associations of traits with the microbial composition of a set of samples is a fundamental goal in microbiome studies. Recently, machine learning methods have been explored for this goal, with some promise. However, in comparison to other fields, microbiome data are high-dimensional and not abundant; leading to a high-dimensional low-sample-size under-determined system. Moreover, microbiome data are often unbalanced and biased. Given such training data, machine learning methods often fail to perform a classification task with sufficient accuracy. Lack of signal is especially problematic when classes are represented in an unbalanced way in the training data; with some classes under-represented. The presence of inter-correlations among subsets of observations further compounds these issues. As a result, machine learning methods have had only limited success in predicting many traits from microbiome. Data augmentation consists of building synthetic samples and adding them to the training data and is a technique that has proved helpful for many machine learning tasks.

    Results

    In this paper, we propose a new data augmentation technique for classifying phenotypes based on the microbiome. Our algorithm, called TADA, uses available data and a statistical generative model to create new samples augmenting existing ones, addressing issues of low-sample-size. In generating new samples, TADA takes into account phylogenetic relationships between microbial species. On two real datasets, we show that adding these synthetic samples to the training set improves the accuracy of downstream classification, especially when the training data have an unbalanced representation of classes.

    Availability and implementation

    TADA is available at https://github.com/tada-alg/TADA.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  9. Abstract

    Phylogenomic analyses have increasingly adopted species tree reconstruction using methods that account for gene tree discordance using pipelines that require both human effort and computational resources. As the number of available genomes continues to increase, a new problem is facing researchers. Once more species become available, they have to repeat the whole process from the beginning because updating species trees is currently not possible. However, the de novo inference can be prohibitively costly in human effort or machine time. In this article, we introduce INSTRAL, a method that extends ASTRAL to enable phylogenetic placement. INSTRAL is designed to place a new species on an existing species tree after sequences from the new species have already been added to gene trees; thus, INSTRAL is complementary to existing placement methods that update gene trees. [ASTRAL; ILS; phylogenetic placement; species tree reconstruction.]

     
    more » « less
  10. Abstract

    Rapid growth of genome data provides opportunities for updating microbial evolutionary relationships, but this is challenged by the discordant evolution of individual genes. Here we build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on a comprehensive set of 381 markers, using multiple strategies. Our trees indicate remarkably closer evolutionary proximity between Archaea and Bacteria than previous estimates that were limited to fewer “core” genes, such as the ribosomal proteins. The robustness of the results was tested with respect to several variables, including taxon and site sampling, amino acid substitution heterogeneity and saturation, non-vertical evolution, and the impact of exclusion of candidate phyla radiation (CPR) taxa. Our results provide an updated view of domain-level relationships.

     
    more » « less