Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We obtain a perturbative proof of localization for quasiperiodic operators on$$\ell ^2(\mathbb Z^d)$$ with one-dimensional phase space and monotone sampling functions, in the regime of small hopping. The proof is based on an iterative scheme which can be considered as a local (in the energy and the phase) and convergent version of KAM-type diagonalization, whose result is a covariant family of uniformly localized eigenvalues and eigenvectors. We also prove that the spectra of such operators contain infinitely many gaps.more » « less
-
On Gaps in the Spectra of Quasiperiodic Schrödinger Operators with Discontinuous Monotone PotentialsWe show that, for one-dimensional discrete Schrödinger operators, stability of Anderson localization under a class of rank one perturbations implies absence of intervals in spectra. The argument is based on well-known results of Gordon and del Rio–Makarov–Simon, combined with a way to consider perturbations whose ranges are not necessarily cyclic. The main application of the results is showing that a class of quasiperiodic operators with sawtooth-like potentials, for which such a version of stable localization is known, has Cantor spectra. We also obtain several results on gap filling under rank one perturbations for some general (not necessarily monotone) classes of quasiperiodic operators with discontinuous potentials.more » « lessFree, publicly-accessible full text available April 1, 2026
-
We consider discrete periodic operator on Z^d with respect to lattices of full rank. We describe the class of lattices for which the operator may have a spectral gap for arbitrarily small potentials. We also show that, for a large class of lattices, the dimensions of the level sets of spectral band functions at the band edges do not exceed d-2.more » « less
-
We consider a discrete non-linear Schrödinger equation on Z and show that, after adding a small potential localized in the time-frequency space, one can construct a three-parametric family of non-decaying spacetime quasiperiodic solutions to this equation. The proof is based on the Craig–Wayne–Bourgain method combined with recent techniques of dealing with Anderson localization for two-dimensional quasiperiodic operators with degenerate frequencies.more » « less
-
In this paper, we show that one-dimensional discrete multifrequency quasiperiodic Schrödinger operators with smooth potentials demonstrate ballistic motion on the set of energies on which the corresponding Schrödinger cocycles are smoothly reducible to constant rotations. The proof is performed by establishing a local version of strong ballistic transport on an exhausting sequence of subsets on which reducibility can be achieved by a conjugation uniformly bounded in the Cℓ-norm. We also establish global strong ballistic transport under an additional integral condition on the norms of conjugation matrices. The latter condition is quite mild and is satisfied in many known examples.more » « less
An official website of the United States government
