skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: On Gaps in the Spectra of Quasiperiodic Schrödinger Operators with Discontinuous Monotone Potentials
We show that, for one-dimensional discrete Schrödinger operators, stability of Anderson localization under a class of rank one perturbations implies absence of intervals in spectra. The argument is based on well-known results of Gordon and del Rio–Makarov–Simon, combined with a way to consider perturbations whose ranges are not necessarily cyclic. The main application of the results is showing that a class of quasiperiodic operators with sawtooth-like potentials, for which such a version of stable localization is known, has Cantor spectra. We also obtain several results on gap filling under rank one perturbations for some general (not necessarily monotone) classes of quasiperiodic operators with discontinuous potentials.  more » « less
Award ID(s):
1846114 2052519
PAR ID:
10616709
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2025
Issue:
7
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we show that one-dimensional discrete multifrequency quasiperiodic Schrödinger operators with smooth potentials demonstrate ballistic motion on the set of energies on which the corresponding Schrödinger cocycles are smoothly reducible to constant rotations. The proof is performed by establishing a local version of strong ballistic transport on an exhausting sequence of subsets on which reducibility can be achieved by a conjugation uniformly bounded in the Cℓ-norm. We also establish global strong ballistic transport under an additional integral condition on the norms of conjugation matrices. The latter condition is quite mild and is satisfied in many known examples. 
    more » « less
  2. Abstract We obtain a perturbative proof of localization for quasiperiodic operators on$$\ell ^2(\mathbb Z^d)$$ 2 ( Z d ) with one-dimensional phase space and monotone sampling functions, in the regime of small hopping. The proof is based on an iterative scheme which can be considered as a local (in the energy and the phase) and convergent version of KAM-type diagonalization, whose result is a covariant family of uniformly localized eigenvalues and eigenvectors. We also prove that the spectra of such operators contain infinitely many gaps. 
    more » « less
  3. We consider a discrete non-linear Schrödinger equation on Z and show that, after adding a small potential localized in the time-frequency space, one can construct a three-parametric family of non-decaying spacetime quasiperiodic solutions to this equation. The proof is based on the Craig–Wayne–Bourgain method combined with recent techniques of dealing with Anderson localization for two-dimensional quasiperiodic operators with degenerate frequencies. 
    more » « less
  4. Abstract Quasiperiodic systems are aperiodic but deterministic, so their critical behavior differs from that of clean systems and disordered ones as well. Quasiperiodic criticality was previously understood only in the special limit where the couplings follow discrete quasiperiodic sequences. Here we consider generic quasiperiodic modulations; we find, remarkably, that for a wide class of spin chains, generic quasiperiodic modulations flow to discrete sequences under a real-space renormalization-group transformation. These discrete sequences are therefore fixed points of a functional renormalization group. This observation allows for an asymptotically exact treatment of the critical points. We use this approach to analyze the quasiperiodic Heisenberg, Ising, and Potts spin chains, as well as a phenomenological model for the quasiperiodic many-body localization transition. 
    more » « less
  5. In this paper, we prove pure point spectrum for a large class of Schrödinger operators over circle maps with conditions on the rotation number going beyond the Diophantine. More specifically, we develop the scheme to obtain pure point spectrum for Schrödinger operators with monotone bi-Lipschitz potentials over orientation-preserving circle homeomorphisms with Diophantine or weakly Liouville rotation number. The localization is uniform when the coupling constant is large enough. 
    more » « less