skip to main content


Search for: All records

Award ID contains: 1846431

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autonomous vehicles (AVs) must drive across a variety of challenging environments that impose continuously-varying deadlines and runtime-accuracy tradeoffs on their software pipelines. A deadline-driven execution of such AV pipelines requires a new class of systems that enable the computation to maximize accuracy under dynamically-varying deadlines. Designing these systems presents interesting challenges that arise from combining ease-of-development of AV pipelines with deadline specification and enforcement mechanisms. Our work addresses these challenges through D3 (Dynamic Deadline-Driven), a novel execution model that centralizes the deadline management, and allows applications to adjust their computation by modeling missed deadlines as exceptions. Further, we design and implement ERDOS, an open-source realization of D3 for AV pipelines that exposes finegrained execution events to applications, and provides mechanisms to speculatively execute computation and enforce deadlines between an arbitrary set of events. Finally, we address the crucial lack of AV benchmarks through our state-of-the-art open-source AV pipeline, Pylot, that works seamlessly across simulators and real AVs. We evaluate the efficacy of D3 and ERDOS by driving Pylot across challenging driving scenarios spanning 50km, and observe a 68% reduction in collisions as compared to prior execution models. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing state-of-the-art, efficient neural networks. However, DARTS-based DNAS's search space is small when compared to other search methods', since all candidate network layers must be explicitly instantiated in memory. To address this bottleneck, we propose a memory and computationally efficient DNAS variant: DMaskingNAS. This algorithm expands the search space by up to 10^14x over conventional DNAS, supporting searches over spatial and channel dimensions that are otherwise prohibitively expensive: input resolution and number of filters. We propose a masking mechanism for feature map reuse, so that memory and computational costs stay nearly constant as the search space expands. Furthermore, we employ effective shape propagation to maximize per-FLOP or per-parameter accuracy. The searched FBNetV2s yield state-of-the-art performance when compared with all previous architectures. With up to 421x less search cost, DMaskingNAS finds models with 0.9% higher accuracy, 15% fewer FLOPs than MobileNetV3-Small; and with similar accuracy but 20% fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2 outperforms MobileNetV3 by 2.6% in accuracy, with equivalent model size. FBNetV2 models are open-sourced at https://github.com/facebookresearch/mobile-vision. 
    more » « less
  4. null (Ed.)
    Serving ML prediction pipelines spanning multiple models and hardware accelerators is a key challenge in production machine learning. Optimally configuring these pipelines to meet tight end-to-end latency goals is complicated by the interaction between model batch size, the choice of hardware accelerator, and variation in the query arrival process. In this paper we introduce InferLine, a system which provisions and manages the individual stages of prediction pipelines to meet end-to-end tail latency constraints while minimizing cost. InferLine consists of a low-frequency combinatorial planner and a high-frequency auto-scaling tuner. The low-frequency planner leverages stage-wise profiling, discrete event simulation, and constrained combinatorial search to automatically select hardware type, replication, and batching parameters for each stage in the pipeline. The high-frequency tuner uses network calculus to auto-scale each stage to meet tail latency goals in response to changes in the query arrival process. We demonstrate that InferLine outperforms existing approaches by up to 7.6x in cost while achieving up to 34.5x lower latency SLO miss rate on realistic workloads and generalizes across state-of-the-art model serving frameworks. 
    more » « less
  5. III, Hal Daumé (Ed.)
    Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models. 
    more » « less
  6. null (Ed.)
    Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models. 
    more » « less
  7. Larger networks generally have greater representational power at the cost of increased computational complexity. Sparsifying such networks has been an active area of research but has been generally limited to static regularization or dynamic approaches using reinforcement learning. We explore a mixture of experts (MoE) approach to deep dynamic routing, which activates certain experts in the network on a per-example basis. Our novel DeepMoE architecture increases the representational power of standard convolutional networks by adaptively sparsifying and recalibrating channel-wise features in each convolutional layer. We employ a multi-headed sparse gating network to determine the selection and scaling of channels for each input, leveraging exponential combinations of experts within a single convolutional network. Our proposed architecture is evaluated on four benchmark datasets and tasks, and we show that Deep-MoEs are able to achieve higher accuracy with lower computation than standard convolutional networks. 
    more » « less
  8. We present Accel, a novel semantic video segmentation system that achieves high accuracy at low inference cost by combining the predictions of two network branches: (1) a reference branch that extracts high-detail features on a reference keyframe, and warps these features forward using frame-to-frame optical flow estimates, and (2) an update branch that computes features of adjustable quality on the current frame, performing a temporal update at each video frame. The modularity of the update branch, where feature subnetworks of varying layer depth can be inserted (e.g. ResNet-18 to ResNet-101), enables operation over a new, state-of-the-art accuracy-throughput trade-off spectrum. Over this curve, Accel models achieve both higher accuracy and faster inference times than the closest comparable single-frame segmentation networks. In general, Accel significantly outperforms previous work on efficient semantic video segmentation, correcting warping-related error that compounds on datasets with complex dynamics. Accel is end-to-end trainable and highly modular: the reference network, the optical flow network, and the update network can each be selected independently, depending on application requirements, and then jointly fine-tuned. The result is a robust, general system for fast, high-accuracy semantic segmentation on video 
    more » « less