skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: InferLine: latency-aware provisioning and scaling for prediction serving pipelines
Serving ML prediction pipelines spanning multiple models and hardware accelerators is a key challenge in production machine learning. Optimally configuring these pipelines to meet tight end-to-end latency goals is complicated by the interaction between model batch size, the choice of hardware accelerator, and variation in the query arrival process. In this paper we introduce InferLine, a system which provisions and manages the individual stages of prediction pipelines to meet end-to-end tail latency constraints while minimizing cost. InferLine consists of a low-frequency combinatorial planner and a high-frequency auto-scaling tuner. The low-frequency planner leverages stage-wise profiling, discrete event simulation, and constrained combinatorial search to automatically select hardware type, replication, and batching parameters for each stage in the pipeline. The high-frequency tuner uses network calculus to auto-scale each stage to meet tail latency goals in response to changes in the query arrival process. We demonstrate that InferLine outperforms existing approaches by up to 7.6x in cost while achieving up to 34.5x lower latency SLO miss rate on realistic workloads and generalizes across state-of-the-art model serving frameworks.  more » « less
Award ID(s):
1846431
PAR ID:
10245792
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
SoCC '20: Proceedings of the 11th ACM Symposium on Cloud Computing
Page Range / eLocation ID:
477 to 491
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing machine learning inference-serving systems largely rely on hardware scaling by adding more devices or using more powerful accelerators to handle increasing query demands. However, hardware scaling might not be feasible for fixed-size edge clusters or private clouds due to their limited hardware resources. A viable alternate solution is accuracy scaling, which adapts the accuracy of ML models instead of hardware resources to handle varying query demands. This work studies the design of a high-throughput inferenceserving system with accuracy scaling that can meet throughput requirements while maximizing accuracy. To achieve the goal, this work proposes to identify the right amount of accuracy scaling by jointly optimizing three sub-problems: how to select model variants, how to place them on heterogeneous devices, and how to assign query workloads to each device. It also proposes a new adaptive batching algorithm to handle variations in query arrival times and minimize SLO violations. Based on the proposed techniques, we build an inference-serving system called Proteus and empirically evaluate it on real-world and synthetic traces. We show that Proteus reduces accuracy drop by up to 3× and latency timeouts by 2-10× with respect to baseline schemes, while meeting throughput requirements. 
    more » « less
  2. Existing machine learning inference-serving systems largely rely on hardware scaling by adding more devices or using more powerful accelerators to handle increasing query demands. However, hardware scaling might not be feasible for fixed-size edge clusters or private clouds due to their limited hardware resources. A viable alternate solution is accuracy scaling, which adapts the accuracy of ML models instead of hardware resources to handle varying query demands. This work studies the design of a high-throughput inferenceserving system with accuracy scaling that can meet throughput requirements while maximizing accuracy. To achieve the goal, this work proposes to identify the right amount of accuracy scaling by jointly optimizing three sub-problems: how to select model variants, how to place them on heterogeneous devices, and how to assign query workloads to each device. It also proposes a new adaptive batching algorithm to handle variations in query arrival times and minimize SLO violations. Based on the proposed techniques, we build an inference-serving system called Proteus and empirically evaluate it on real-world and synthetic traces. We show that Proteus reduces accuracy drop by up to 3× and latency timeouts by 2-10× with respect to baseline schemes, while meeting throughput requirements. 
    more » « less
  3. Reducing tail latency has become a crucial issue for optimizing the performance of online cloud services and distributed applications. In distributed applications, there are many causes of high end-to-end tail latency, including operating system delays, request re-ordering due to fan-out/fanin, and network congestion. Although recent research has focused on reducing tail latency for individual application components, such as by replicating requests and scheduling, in this paper, we argue for a holistic approach for reducing the end-to-end tail latency across application components. We propose TailClipper, a distributed scheduler that tags each arriving request with an arrival timestamp, and propagates it across the microservices' call chain. TailClipper then uses arrival timestamps to implement an oldest request first scheduler that combines global first-come first serve with a limited form of processor sharing to reduce end-to-end tail latency. In doing so, TailClipper can counter the performance degradation caused by request reordering in multi-tiered and microservices-based applications. We implement TailClipper as a userspace Linux scheduler and evaluate it using cloud workload traces and a real-world microservices application. Compared to state-of-the-art schedulers, our experiments reveal that TailClipper improves the 99th percentile response time by up to 81%, while also improving the mean response time and the system throughput by up to 54% and 29% respectively under high loads. 
    more » « less
  4. null (Ed.)
    Saving energy for latency-critical applications like web search can be challenging because of their strict tail latency constraints. State-of-the-art power management frameworks use Dynamic Voltage and Frequency Scaling (DVFS) and Sleep states techniques to slow down the request processing and finish the search just-in-time. However, accurately predicting the compute demand of a request can be difficult. In this paper, we present Gemini, a novel power management framework for latency- critical search engines. Gemini has two unique features to capture the per query service time variation. First, at light loads without request queuing, a two-step DVFS is used to manage the CPU power. Our two-step DVFS selects the initial CPU frequency based on the query specific service time prediction and then judiciously boosts the initial frequency at the right time to catch-up to the deadline. The determination of boosting time further relies on estimating the error in the prediction of individual query’s service time. At high loads, where there is request queuing, only the current request being executed and the critical request in the queue adopt a two-step DVFS. All the other requests in-between use the same frequency to reduce the frequency transition overhead. Second, we develop two separate neural network models, one for predicting the service time and the other for the error in the prediction. The combination of these two predictors significantly improves the power saving and tail latency results of our two-step DVFS. Gemini is implemented on the Solr search engine. Evaluations on three representative query traces show that Gemini saves 41% of the CPU power, and is better than other state-of-the-art techniques. 
    more » « less
  5. The advances of Machine Learning (ML) have sparked a growing demand of ML-as-a-Service: developers train ML models and publish them in the cloud as online services to provide low-latency inference at scale. The key challenge of ML model serving is to meet the response-time Service-Level Objectives (SLOs) of inference workloads while minimizing the serving cost. In this paper, we tackle the dual challenge of SLO compliance and cost effectiveness with MArk (Model Ark), a general-purpose inference serving system built in Amazon Web Services (AWS). MArk employs three design choices tailor-made for inference workload. First, MArk dynamically batches requests and opportunistically serves them using expensive hardware accelerators (e.g., GPU) for improved performance-cost ratio. Second, instead of relying on feedback control scaling or over-provisioning to serve dynamic workload, which can be too slow or too expensive for inference serving, MArk employs predictive autoscaling to hide the provisioning latency at low cost. Third, given the stateless nature of inference serving, MArk exploits the flexible, yet costly serverless instances to cover the occasional load spikes that are hard to predict. We evaluated the performance of MArk using several state-of-the-art ML models trained in popular frameworks including TensorFlow, MXNet, and Keras. Compared with the premier industrial ML serving platform SageMaker, MArk reduces the serving cost up to 7.8× while achieving even better latency performance. 
    more » « less