skip to main content


Search for: All records

Award ID contains: 1846935

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    For the first time, high‐entropy rare‐earth monoclinic aluminate crystals were grown via directional solidification using the micro‐pulling‐down method. Five high‐entropy compositions were formulated with a general formula RE4Al2O9, where RE is an equiatomic mixture of five rare‐earth elements. The rare‐earth elements included were Lu, Yb, Er, Y, Ho, Dy, Tb, Gd, Eu, Sm, Nd, and La. High‐temperature powder X‐ray diffraction and Rietveld structure refinement indicated that all crystals were a single monoclinic phase and that rare‐earth average ionic radius did not affect phase purity. At room temperature, the refined lattice parameters increased consistently with increasing average ionic radii of the five compositions. One of the crystals had a typical high‐temperature phase transition of single‐RE RE4Al2O9in the range of 1100–1150°C, which consisted of a lattice contraction upon heating. Differential scanning calorimetry indicated a thermal event corresponding to that phase transition. Electron probe microanalysis revealed Al‐rich inclusions on the surface of the crystals. Crystals containing Tb had dark surface features that became lighter after annealing in a reducing atmosphere, which indicated that Tb4+may be responsible for the dark features.

     
    more » « less
  2. Abstract

    Phase formation in multicomponent rare‐earth oxides is determined by a combination of composition, sintering atmosphere, and cooling rate. Polycrystalline ceramics comprising various combinations of Ce, Gd, La, Nd, Pr, Sm, and Y oxides in equiatomic proportions were synthesized using solid‐state sintering. The effects of composition, sintering atmosphere, and cooling rate on phase formation were investigated. Single cubic or monoclinic structures were obtained with a slow cooling of 3.3°C/min, confirming that rare‐earth oxides follow a different structure stabilization process than transition metal high‐entropy oxides. In an oxidizing atmosphere, both Ce and Pr induce a cubic structure, while only Ce plays that role in an inert or reducing atmosphere. Samples without Ce or Pr develop a single monoclinic structure. The structures formed at initial synthesis may be converted to a different one, when the ceramics are annealed in an additional atmosphere. Phase evolution of a five‐cation composition was also studied as a function of sintering temperature. The binary oxides used as raw materials completely dissolve into a single cubic structure at 1450°C in air.

     
    more » « less
  3. Abstract The challenge of growing rare-earth (RE) sesquioxide crystals can be overcome by tailoring their structural stability and melting point via composition engineering. This work contributes to the advancement of the field of crystal growth of high-entropy oxides. A compound with only small REs (Lu,Y,Ho,Yb,Er) 2 O 3 maintains a cubic C-type structure upon cooling from the melt, as observed via in-situ high-temperature neutron diffraction on aerodynamically levitated samples. On the other hand, a compound with a mixture of small and large REs (Lu,Y,Ho,Nd,La) 2 O 3 crystallizes as a mixture of a primary C-type phase with an unstable secondary phase. Crystals of compositions (Lu,Y,Ho,Nd,La) 2 O 3 and (Lu,Y,Gd,Nd,La) 2 O 3 were grown by the micro-pulling-down (mPD) method with a single monoclinic B-type phase, while a powder of (Lu,Y,Ho,Yb,Er) 2 O 3 did not melt at the maximum operating temperature of an iridium-rhenium crucible. The minimization of the melting point of the two grown crystals is attributed to the mismatch in cation sizes. The electron probe microanalysis reveals that the general element segregation behavior in the crystals depends on the composition. 
    more » « less
  4. The effects of composition on the phase formation of multicomponent garnet crystals grown via directional solidification by the micro-pulling-down method are studied. A relatively wide range of rare-earth (RE) average ionic radii (AIR) is explored by formulating ten compositions from the system (Lu,Y,Ho,Dy,Tb,Gd) 3 Al 5 O 12 . Crystals were grown at either 0.05 or 0.20 mm min −1 . The hypothesis is that multicomponent compounds with large AIR will form secondary phases as the single-RE aluminum garnets formed by larger Tb 3+ or Gd 3+ ; this will result in crystals of poor optical quality. Crystals with large AIR have a central opaque region in optical microscopy images, which is responsible for their reduced transparency compared to crystals with small AIR. Slow pulling rates suppress the formation of the opaque region in crystals with intermediate AIR. Powder and single-crystal X-ray diffraction and electron probe microanalysis results indicate that the opaque region is a perovskite phase. Scanning electron microscopy and energy dispersive spectroscopy measurements reveal eutectic inclusions at the outer surface of the crystals. The concentration of the eutectic inclusions increases with increasing AIR. 
    more » « less
  5. null (Ed.)