skip to main content


Search for: All records

Award ID contains: 1846969

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The mechanical impedance of the joints of the leg governs the body's response to external disturbances, and its regulation is essential for the completion of tasks of daily life. However, it is still unclear how this quantity is regulated at the knee during dynamic tasks. In this work, we introduce a method to estimate the mechanical impedance of spring-mass systems using a torque-controllable exoskeleton with the intention of extending these methods to characterize the mechanical impedance of the human knee during locomotion. We characterize system bandwidth and intrinsic impedance and present a perturbation-based methodology to identify the mechanical impedance of known spring-mass systems. Our approach was able to obtain accurate estimates of stiffness and inertia, with errors under 3% and ∼13–16%, respectively. This work provides a qualitative and quantitative foundation that will enable accurate estimates of knee joint impedance during locomotion in future works. 
    more » « less