skip to main content

Title: Validation of Methods for Estimation of Knee Joint Mechanical Impedance During Locomotion Using a Torque-Controllable Knee Exoskeleton
Abstract The mechanical impedance of the joints of the leg governs the body's response to external disturbances, and its regulation is essential for the completion of tasks of daily life. However, it is still unclear how this quantity is regulated at the knee during dynamic tasks. In this work, we introduce a method to estimate the mechanical impedance of spring-mass systems using a torque-controllable exoskeleton with the intention of extending these methods to characterize the mechanical impedance of the human knee during locomotion. We characterize system bandwidth and intrinsic impedance and present a perturbation-based methodology to identify the mechanical impedance of known spring-mass systems. Our approach was able to obtain accurate estimates of stiffness and inertia, with errors under 3% and ∼13–16%, respectively. This work provides a qualitative and quantitative foundation that will enable accurate estimates of knee joint impedance during locomotion in future works.
Authors:
; ;
Award ID(s):
1846969
Publication Date:
NSF-PAR ID:
10315708
Journal Name:
Journal of Biomechanical Engineering
Volume:
144
Issue:
4
ISSN:
0148-0731
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The spring-mass model is a model of locomotion aimed at giving the essential mathematical laws of the trajectory of the center of mass of an animal during bouncing gaits, such as hopping (one-dimensional) and running (two-dimensional). This reductionist mechanical system has been extensively investigated for locomotion over horizontal surfaces, whereas it has been largely neglected on other ecologically relevant surfaces, including inclines. For example, how the degree of inclination impacts the dynamics of the center of mass of the spring-mass model has not been investigated thoroughly. In this work, we derive a mathematical model which extends the spring-mass model to inclined surfaces. Among our results, we derive an approximate solution of the system, assuming a small angular sweep of the limb and a small spring compression during stance, and show that this approximation is very accurate, especially for small inclinations of the ground. Furthermore, we derive theoretical bounds on the difference between the Lagrangian and Lagrange equations of the true and approximate systems, and discuss locomotor stability questions of the approximate solutions. We test our models through a sensitivity analysis using parameters relevant to the locomotion of bipedal animals (quail, pheasant, guinea fowl, turkey, ostrich, and humans) and compare ourmore »approximate solution to the numerically derived solution of the exact system. We compare the two-dimensional spring-mass model on inclines with the one-dimensional spring-mass model to which it reduces under the limit of no horizontal velocity; we compare the two-dimensional spring-mass model on inclines with the inverted pendulum model on inclines towards which it converges in the case of high stiffness-to-mass ratio. We include comparisons with historically prevalent no-gravity approximations of these models, as well. The insights we have gleaned through all these comparisons and the ability of our approximation to replicate some of the kinematic changes observed in animals moving on different inclines (e.g., reduction in vertical oscillation of the center of mass and decreased stride length) underline the valuable and reasonable contributions that very simple, reductionist models, like the spring-mass model, can provide.

    « less
  2. This paper presents design and control innovations of wearable robots that tackle two barriers to widespread adoption of powered exoskeletons, namely restriction of human movement and versatile control of wearable co-robot systems. First, the proposed quasi-direct drive actuation comprising of our customized high-torque density motors and low ratio transmission mechanism significantly reduces the mass of the robot and produces high backdrivability. Second, we derive a biomechanics model-based control that generates biological torque profile for versatile control of both squat and stoop lifting assistance. The control algorithm detects lifting postures using compact inertial measurement unit (IMU) sensors to generate an assistive profile that is proportional to the biological torque produced from our model. Experimental results demonstrate that the robot exhibits low mechanical impedance (1.5 Nm resistive torque) when it is unpowered and 0.5 Nm resistive torque with zero-torque tracking control. Root mean square (RMS) error of torque tracking is less than 0.29 Nm (1.21% error of 24 Nm peak torque). Compared with squatting without the exoskeleton, the controller reduces 87.5%, 80% and 75% of the of three knee extensor muscles (average peak EMG of 3 healthy subjects) during squat with 50% of biological torque assistance.
  3. Transfemoral amputee gait often exhibits compensations due to the lack of ankle push-off power and control over swing foot position using passive prostheses. Powered prostheses can restore this functionality, but their effects on compensatory behaviors, specifically at the residual hip, are not well understood. This paper investigates residual hip compensations through walking experiments with three transfemoral amputees using a low-impedance powered knee-ankle prosthesis compared to their day-to-day passive prosthesis. The powered prosthesis used impedance control during stance for compliant interaction with the ground, a time-based push-off controller to deliver high torque and power, and phase-based trajectory tracking during swing to provide user control over foot placement. Experiments show that when subjects utilized the powered ankle push-off, less mechanical pull-off power was required from the residual hip to progress the limb forward. Overall positive work at the residual hip was reduced for 2 of 3 subjects, and negative work was reduced for all subjects. Moreover, all subjects displayed increased step length, increased propulsive impulses on the prosthetic side, and improved impulse symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. These improvements in gait, especially reduced residual hip power and work, have the potentialmore »to reduce fatigue and overuse injuries in persons with transfemoral amputation.« less
  4. Although the average healthy adult transitions from sit to stand over 60 times per day, most research on powered prosthesis control has only focused on walking. In this paper, we present a data-driven controller that enables sitting, standing, and walking with minimal tuning. Our controller comprises two high level modes of sit/stand and walking, and we develop heuristic biomechanical rules to control transitions. We use a phase variable based on the user's thigh angle to parameterize both walking and sit/stand motions, and use variable impedance control during ground contact and position control during swing. We extend previous work on data-driven optimization of continuous impedance parameter functions to design the sit/stand control mode using able-bodied data. Experiments with a powered knee-ankle prosthesis used by a participant with above-knee amputation demonstrate promise in clinical outcomes, as well as trade-offs between our minimal-tuning approach and accommodation of user preferences. Specifically, our controller enabled the participant to complete the sit/stand task 20% faster and reduced average asymmetry by half compared to his everyday passive prosthesis. The controller also facilitated a timed up and go test involving sitting, standing, walking, and turning, with only a mild (10%) decrease in speed compared to the everyday prosthesis.more »Our sit/stand/walk controller enables multiple activities of daily life with minimal tuning and mode switching.« less
  5. In this article, we present the design of a powered knee–ankle prosthetic leg, which implements high-torque actuators with low-reduction transmissions. The transmission coupled with a high-torque and low-speed motor creates an actuator with low mechanical impedance and high backdrivability. This style of actuation presents several possible benefits over modern actuation styles in emerging robotic prosthetic legs, which include free-swinging knee motion, compliance with the ground, negligible unmodeled actuator dynamics, less acoustic noise, and power regeneration. Benchtop tests establish that both joints can be backdriven by small torques ( ∼ 1–3 N ⋅ m) and confirm the small reflected inertia. Impedance control tests prove that the intrinsic impedance and unmodeled dynamics of the actuator are sufficiently small to control joint impedance without torque feedback or lengthy tuning trials. Walking experiments validate performance under the designed loading conditions with minimal tuning. Finally, the regenerative abilities, low friction, and small reflected inertia of the presented actuators reduced power consumption and acoustic noise compared to state-of-the-art powered legs.