skip to main content

Search for: All records

Award ID contains: 1847019

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 29, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. Sea salt aerosols contribute significantly to the mass loading of ambient aerosol, which may serve as cloud condensation nuclei and can contribute to light scattering in the atmosphere. Two major chemical components commonly found in sea salts are ammonium sulfate (AS) and sodium chloride (NaCl). It has been shown that alkylamines, derivatives of ammonia, can react with ammonium salts in the particle-phase to displace ammonia and likely change the particle properties. This study investigated the effects of atmospheric alkylamines on the composition and properties of sea salt aerosols using a chemical system of methylamine (MA, as a proxy of alkylamines), AS and NaCl (as a proxy of sea salt aerosol). The concentrations of ammonia and MA in aqueous/gas phases at the thermodynamic equilibrium were determined using the Extended Aerosols and Inorganics Model (E-AIM) under varying initial inputs, along with the deliquescence relative humidity (DRH) and the corresponding particle water content. Our findings indicated a notable negative relationship between MA concentration and the DRH for both AS and NaCl while the effect of MA on NaCl is smaller than that on AS. The salt of MA in the particle phase may absorb water vapor and may lead to the displacement reactionmore »between AS and NaCl due to the low solubility of sodium sulfate. The acidity in the particle phase also played a significant role in affecting the DRH of sea salt aerosols. Since both sea salt aerosol and alkylamines are emitted into the atmosphere from the ocean in large quantities, our study suggested the potential impact of alkylamines on the environment and the climate via the modification of sea salt aerosol properties.« less
  4. Recent research in atmospheric chemistry suggested that gaseous amines may rapidly react with the acidic components in the aerosol to be incorporated in the particle phase. However, laboratory experiments suggested that these heterogeneous processes may be sensitive to the reaction conditions, such as relative humidity (RH), the initial aerosol acidity and the initial concentration of gaseous ammonia which is ubiquitous in the atmosphere. We studied the heterogenous reactions between several amines and ammonium sulfate using a series of thermodynamic simulations under varying initial conditions, including RH, particle-phase acidity and gaseous amine and ammonia concentrations. Several distinctively different trends in the particle-phase ammonium, amines and water content were observed, depending significantly on the particle-phase acidity and the initial amine to ammonia mole ratio. One notable observation was that alkylamines may facilitate the water uptake of ammonium sulfate even in the presence of 1000 times more ammonia gas. Such change in aerosol water content may alter the surface tension, uptake coefficient and could formation properties of aerosol and influence the radiative forcing of the particles.
  5. Abstract
    Dataset for Potential Enhancement in Atmospheric Nanoparticles Growth by Amine-Assisted Nitrate Condensation at Room Temperature