Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In situ observed data are commonly used as species occurrence response variables in species distribution models. However, the use of remotely observed data from high‐resolution multispectral remote‐sensing images as a source of presence/absence data for species distribution models remains under‐developed. Here, we describe an ensemble species distribution model of black microbial mats "Nostoc" using presence/absence points derived from the unmixing of 4‐m resolution WorldView‐2 and WorldView‐3 images in the Lake Fryxell basin region of Taylor Valley, Antarctica. Environmental and topographical characteristics such as soil moisture, snow, elevation, slope, and aspect were used as predictor variables in our models. We demonstrate that we can build and run ensemble species distribution models using both dependent and independent variables derived from remote‐sensing data to generate spatially explicit habitat suitability maps. Snow and soil moisture were found to be the most important variables accounting for about 80% of the variation in the distribution of black mats throughout the Fryxell basin. This study highlights the potential contribution of high‐resolution remote‐sensing to species distribution modeling and informs new studies incorporating remotely derived species occurrences in species distribution models, especially in remote areas where access to in situ data is often limited.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Groundwater in the McMurdo Dry Valleys of Antarctica is commonly enriched in calcium and chloride, in contrast to surface and groundwater in temperate regions, where calcium chemistry is largely controlled by the dissolution of carbonates and sulfates. These Antarctic Ca-Cl brines have extremely low freezing points, which leads to moist soil conditions that persist unfrozen and resist evaporation, even in cold, arid conditions. Several hypotheses exist to explain these unusual excess-calcium solutions, including salt deliquescence and differential salt mobility and cation exchange. Although the cation exchange mechanism was shown to explain the chemistry of pore waters in permafrost cores from several meters depth, it has not been evaluated for near-surface groundwater and wetland features (water tracks) in which excess-calcium pore-water solutions are common. Here, we use soluble salt and exchangeable cation concentrations to determine whether excess calcium is present in water-track brines and if cation exchange could be responsible for calcium enrichment in these cold desert groundwaters. We show that calcium enrichment by cation exchange is not occurring universally across the McMurdo Dry Valleys. Instead, evidence of the present-day formation of Ca-Cl−rich brines by cation exchange is focused in a geographically specific location in Taylor Valley, with hydrological position, microclimate, soil depth, and organic matter influencing the spatial extent of cation exchange reactions. Up-valley sites may be too cold and dry for widespread exchange, and warm and wet coastal sites are interpreted to host sediments whose exchange reactions have already gone to completion. We argue that exchangeable cation ratios can be used as a signature of past freeze-concentration of brines and exchange reactions, and thus could be considered a geochemical proxy for past groundwater presence in planetary permafrost settings. Correlations between water-track organic matter, fine sediment concentration, and cation exchange capacity suggest that water tracks may be sites of enhanced biogeochemical cycling in cold desert soils and serve as a model for predicting how active layers in the Antarctic will participate in biogeochemical cycling during periods of future thaw.more » « less
-
Siliciclastic muds (clay- and silt-sized sediment) concentrate physical and chemical weathering products. However, both rock composition and climate can affect the mineralogy and geochemistry of these sediments. We quantitatively assessed the influence of provenance and climate on muds collected from end-member climates to test, which, if any, of these potential weathering signatures are indicative of climate in fine-grained, fluvial sediments. Granulometry, mineralogy, and geochemistry of the studied muds indicated that provenance and mineral sorting hinder interpretation of (paleo)climate signals. These issues also affect chemical index of alteration (CIA) values, as well as mafic-felsic-weathering (MFW), Al2O3−(CaO* + Na2O)−K2O (A-CN-K), and Al2O3−(CaO* + Na2O + K2O)−(FeOT + MgO) (A-CNK-FM) ternary plots, decreasing their utility as paleoclimate proxies. CaO content is heavily weighted within the calculations, resulting in even felsic-sourced sediment commonly plotting as mafic owing to the relative enrichment in CaO from preferential sorting of Ca-rich minerals into the mud-sized fraction during transport. These results cast doubt on the indiscriminate use of CIA values and ternary plots for interpreting chemical weathering and paleoclimate within muds, particularly from glacial systems. Most notably, the positive correlations between CIA and climatic parameters (mean annual temperature and mean annual precipitation) diminished when sediments that had formed in nonglacial settings were filtered out from the data sets. This implies that CIA may only be applicable when used in nonglacial systems in which the composition of the primary source material is well constrained—such as soil/paleosol profiles. Within this end-member climate data set, CIA was only useful in discriminating hot-humid climates.more » « less
-
Available soil moisture is thought to be the limiting factor for most ecosystem processes in the cold polar desert of the McMurdo Dry Valleys (MDVs) of Antarctica. Previous studies have shown that microfauna throughout the MDVs are capable of biological activity when sufficient soil moisture is available (~2–10% gravimetric water content), but few studies have attempted to quantify the distribution, abundance, and frequency of soil moisture on scales beyond that of traditional field work or local field investigations. In this study, we present our work to quantify the soil moisture content of soils throughout the Fryxell basin using multispectral satellite remote sensing techniques. Our efforts demonstrate that ecologically relevant abundances of liquid water are common across the landscape throughout the austral summer. On average, the Fryxell basin of Taylor Valley is modeled as containing 1.5 ± 0.5% gravimetric water content (GWC) across its non-fluvial landscape with ~23% of the landscape experiencing an average GWC > 2% throughout the study period, which is the observed limit of soil nematode activity. These results indicate that liquid water in the soils of the MDVs may be more abundant than previously thought, and that the distribution and availability of liquid water is dependent on both soil properties and the distribution of water sources. These results can also help to identify ecological hotspots in the harsh polar Antarctic environment and serve as a baseline for detecting future changes in the soil hydrological regime.more » « less
-
Abstract Outside of hydrologically wetted active layer soils and humidity-sensitive soil brines, low soil moisture is a limiting factor controlling biogeochemical processes in the McMurdo Dry Valleys. But anecdotal field observations suggest that episodic wetting and darkening of surface soils in the absence of snowmelt occurs during high humidity conditions. Here, I analyse long-term meteorological station data to determine whether soil-darkening episodes are present in the instrumental record and whether they are, in fact, correlated with relative humidity. A strong linear correlation is found between relative humidity and soil reflectance at the Lake Bonney long-term autonomous weather station. Soil reflectance is found to decrease annually by a median of 27.7% in response to high humidity conditions. This magnitude of darkening is consistent with soil moisture rising from typical background values of < 0.5 wt.% to 2–3 wt.%, suggesting that regional atmospheric processes may result in widespread soil moisture generation in otherwise dry surface soils. Temperature and relative humidity conditions under which darkening is observed occur for hundreds of hours per year, but are dominated by episodes occurring between midnight and 07h00 local time, suggesting that wetting events may be common, but are not widely observed during typical diel science operations.more » « less
An official website of the United States government

Full Text Available