skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating weathering signatures in terrestrial muds: Can climatic signatures be separated from provenance?
Siliciclastic muds (clay- and silt-sized sediment) concentrate physical and chemical weathering products. However, both rock composition and climate can affect the mineralogy and geochemistry of these sediments. We quantitatively assessed the influence of provenance and climate on muds collected from end-member climates to test, which, if any, of these potential weathering signatures are indicative of climate in fine-grained, fluvial sediments. Granulometry, mineralogy, and geochemistry of the studied muds indicated that provenance and mineral sorting hinder interpretation of (paleo)climate signals. These issues also affect chemical index of alteration (CIA) values, as well as mafic-felsic-weathering (MFW), Al2O3−(CaO* + Na2O)−K2O (A-CN-K), and Al2O3−(CaO* + Na2O + K2O)−(FeOT + MgO) (A-CNK-FM) ternary plots, decreasing their utility as paleoclimate proxies. CaO content is heavily weighted within the calculations, resulting in even felsic-sourced sediment commonly plotting as mafic owing to the relative enrichment in CaO from preferential sorting of Ca-rich minerals into the mud-sized fraction during transport. These results cast doubt on the indiscriminate use of CIA values and ternary plots for interpreting chemical weathering and paleoclimate within muds, particularly from glacial systems. Most notably, the positive correlations between CIA and climatic parameters (mean annual temperature and mean annual precipitation) diminished when sediments that had formed in nonglacial settings were filtered out from the data sets. This implies that CIA may only be applicable when used in nonglacial systems in which the composition of the primary source material is well constrained—such as soil/paleosol profiles. Within this end-member climate data set, CIA was only useful in discriminating hot-humid climates.  more » « less
Award ID(s):
1847067
PAR ID:
10506757
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geological Society of America Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paleosol weathering commonly is characterized by an index of alteration determined from bulk rock elemental abundances. Although a variety of indices exist, they all essentially compare the proportion of immobile major elemental oxides associated with refractory minerals (mainly Al2O3 in phyllosilicate clays) to mobile major elements associated with labile minerals (i.e., CaO, Na2O). Higher proportions of immobile major elemental oxides reflects more intense chemical weathering, which is used to infer warmer, wetter climate conditions. However, bulk rock alteration indices are known to be influenced by variability in particle size, effects of quartz dilution, and authigenic mineralization, which are challenging to account for when destructive analytical approaches are used. We tested a non-destructive method of assessing chemical weathering intensity using automated mineralogy analysis, which relies on SEM BSE imaging and EDS spectrum acquisition with automated matching of whole spectra to reference spectra to generate quantitative mineralogy estimates. Our case study focused on 9 Upper Pennsylvanian Spodosol samples from the Appalachian basin, and the dominant mineralogic group identified by automated mineralogy in all samples were phyllosilicate clays (50-85%). Six samples showed >20% feldspar: however, grain shape analysis indicates often micron-scale clay-sized grains with prismatic crystal habit were assigned a potassium feldspar spectra. This is due to the automated mineralogy algorithm identifying a mixed signal from sub-micron quartz/amorphous silica and illite in the X-ray volume as a feldspar x-ray spectrum. Furthermore, the Chemical Index of Alteration calculated from bulk elemental estimates of automated mineralogy results ranged from ~60-65, and A-CN-K ternary plots indicate samples were influenced by K-metasomatism. Using an algorithm that assigns automated mineral identification on the basis of both whole-spectrum matching and particle morphology attributes (including grain shape/crystal habit and size), we can better constrain mineralogical interpretation of fine-grained sedimentary lithologies. This allows automated mineralogy analysis to be used in a new approach for assessing weathering intensity by analyzing the proportion of mobile versus immobile elements in prismatic grains versus equant grains across a distribution of grain sizes in a way that can mitigate or minimize known limitations to the accuracy of alteration indices (e.g., authigenic skins, K-metasomatism). 
    more » « less
  2. Here we present a standalone program, DensityX, to calculate the densities of hydrous silicate melts (1000s of samples in a single model run) given pressures, temperatures, and major oxide compositions in wt.% in the 10-component system SiO2-TiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O-K2O-H2O. We use DensityX to analyze over 3,000 melt inclusions over a wide compositional range to visualize the distribution of natural silicate liquid densities in the Earth’s crust. The program is open-source, written in Python, and can be accessed and run via an online interface through a web browser at https://densityx.herokuapp.com or by downloading and running the code from a github repository. A companion Excel spreadsheet can also be used to run density calculations identical to those in the Python script but only for one sample at a time. In another example application, we demonstrate how DensityX can be used to constrain density-driven convective cycling in the phonolitic lava lake of Erebus volcano, Antarctica. 
    more » « less
  3. Lacustrine chemical sediments of the Wilkins Peak Member, Eocene Green River Formation potentially preserve paleoclimate information relating to the conditions of their formation and preservation within the lake basin during the Early Eocene Climatic Optimum. The Green River Formation comprises the world’s largest sodium-carbonate evaporite deposit in the form of trona (Na2CO3⋅NaHCO3⋅2H2O) in the Bridger sub-basin and nahcolite (NaHCO3) in the neighboring Piceance Creek basin. Modern analogues suggest that these minerals necessitate the existence of an alkaline source water. Detrital provenance geochronometers suggest that the most likely source for volcanic waters to the Greater Green River Basin is the Colorado Mineral Belt, connected to the basin via the Aspen paleo-river. We tested the hypothesis that magmatic waters from the Colorado Mineral Belt could have supplied the Greater Green River Basin with the alkalinity needed to precipitate sodium-carbonate evaporites that are preserved in the Wilkins Peak Member by numerically simulating the evaporation of modern soda spring waters from northwestern Colorado at various temperature and atmospheric pCO2 conditions. We compare the resulting simulated evaporite sequences of the modern soda spring waters to the mineralogy preserved within the Wilkins Peak Member. Simulated evaporation of Steamboat Springs water produces the closest match to core observations and mineralogy. These simulations provide constraints on the salinities at which various minerals precipitated in the Wilkins Peak Member as well as insights into the regional temperature (>15ºC for gaylussite and trona; >27º for pirssonite and trona) and pCO2 conditions (<1200ppm for gaylussite and trona) during the EECO. 
    more » « less
  4. null (Ed.)
    Abstract Erosion at Earth’s surface exposes underlying bedrock to climate-driven chemical and physical weathering, transforming it into a porous, ecosystem-sustaining substrate consisting of weathered bedrock, saprolite, and soil. Weathering in saprolite is typically quantified from bulk geochemistry assuming physical strain is negligible. However, modeling and measurements suggest that strain in saprolite may be common, and therefore anisovolumetric weathering may be widespread. To explore this possibility, we quantified the fraction of porosity produced by physical weathering, FPP, at three sites with differing climates in granitic bedrock of the Sierra Nevada, California, USA. We found that strain produces more porosity than chemical mass loss at each site, indicative of strongly anisovolumetric weathering. To expand the scope of our study, we quantified FPP using available volumetric strain and mass loss data from granitic sites spanning a broader range of climates and erosion rates. FPP in each case is ≥0.12, indicative of widespread anisovolumetric weathering. Multiple regression shows that differences in precipitation and erosion rate explain 94% of the variance in FPP and that >98% of Earth’s land surface has conditions that promote anisovolumetric weathering in granitic saprolite. Our work indicates that anisovolumetric weathering is the norm, rather than the exception, and highlights the importance of climate and erosion as drivers of subsurface physical weathering. 
    more » « less
  5. Advancements in automated mineralogy offer an opportunity to develop new approaches to the study of fine-grained sedimentary lithologies including paleosols and pedogenic minerals that hold valuable paleoclimate information. Automated mineralogy is a non-destructive analytical technique that relies on BSE imaging with spectral data to output multimodal hypermaps. Spatial domains are delineated and assigned mineral phases using whole spectrum best matching to reference spectra, providing quantitative sample composition estimates with high throughput data collection. We targeted a Spodosol in the lower part of the Upper Pennsylvanian Casselman Fm. of the Appalachian basin to evaluate the utility of automated mineralogy in determining paleosol composition. During deposition of the lower Casselman Fm., tropical climate during the Late Paleozoic Ice Age began a return to a more humid regime following the Kasimovian–Gzhelian boundary (~304 Ma) warming event. The Spodosol is a composite paleosol approximately 1.4 m thick that displays redoximorphic mottling, small scale (≤ 3 cm) slickensides and weak angular platy ped development. We performed automated mineralogy analysis on 9 paleosol samples, which were formed into 25 mm polished epoxy mounts of disaggregated peds, and generated complete mineralogical maps of the samples. These results indicate that phyllosilicate clays, mainly illite, formed the dominant mineralogic group (50-85%) with lesser amounts of quartz (~5-23%), feldspar (12-30%), carbonate (0-12%) and Fe-oxides (0-9%). Estimates of Al, Ca, Na and K from were used to determine Chemical Index of Alteration, with values ranging from 59-67. These CIA estimates tend to be quite low compared to CIA estimates determined from previous work using bulk elemental abundances by WDS-XRF (CIA >67). Further interrogation of these preliminary results revealed that interphase quartz-illite analyses were assigned a potassium feldspar interpretation. Ultimately we will combine image analysis (e.g., particle shape/habit) with new reference spectra for paleosol interphase matrix material, which together with WDS-XRF and XRD mineralogy calibration can be used to develop a robust methodology for automated mineralogy analysis of paleosols. 
    more » « less