Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To achieve polymer–graphene nanocomposites with high thermal conductivity ( k ), it is critically important to achieve efficient thermal coupling between graphene and the surrounding polymer matrix through effective functionalization schemes. In this work, we demonstrate that edge-functionalization of graphene nanoplatelets (GnPs) can enable a larger enhancement of effective thermal conductivity in polymer–graphene nanocomposites relative to basal plane functionalization. Effective thermal conductivity for the edge case is predicted, through molecular dynamics simulations, to be up to 48% higher relative to basal plane bonding for 35 wt% graphene loading with 10 layer thick nanoplatelets. The beneficial effect of edge bonding is related to the anisotropy of thermal transport in graphene, involving very high in-plane thermal conductivity (∼2000 W m −1 K −1 ) compared to the low out-of-plane thermal conductivity (∼10 W m −1 K −1 ). Likewise, in multilayer graphene nanoplatelets (GnPs), the thermal conductivity across the layers is even lower due to the weak van der Waals bonding between each pair of layers. Edge functionalization couples the polymer chains to the high in-plane thermal conduction pathway of graphene, thus leading to overall high thermal conductivity of the composite. Basal-plane functionalization, however, lowers the thermal resistance between the polymer and the surface graphene sheets of the nanoplatelet only, causing the heat conduction through inner layers to be less efficient, thus resulting in the basal plane scheme to be outperformed by the edge scheme. The present study enables fundamentally novel pathways for achieving high thermal conductivity polymer nanocomposites.more » « less
-
We demonstrate in this work that expanded graphite (EG) can lead to a very large enhancement in thermal conductivity of polyetherimide−graphene and epoxy−graphene nanocomposites prepared via solvent casting technique. A k value of 6.6 W⋅m−1⋅K−1 is achieved for 10 wt% composition sample, representing an enhancement of ~2770% over pristine polyetherimide (k~0.23 W⋅m−1⋅K−1). This extraordinary enhancement in thermal conductivity is shown to be due to a network of continuous graphene sheets over long−length scales, resulting in low thermal contact resistance at bends/turns due to the graphene sheets being covalently bonded at such junctions. Solvent casting offers the advantage of preserving the porous structure of expanded graphite in the composite, resulting in the above highly thermally conductive interpenetrating network of graphene and polymer. Solvent casting also does not break down the expanded graphite particles due to minimal forces involved, allowing for efficient heat transfer over long−length scales, further enhancing overall composite thermal conductivity. Comparisons with a recently introduced effective medium model show a very high value of predicted particle–particle interfacial conductance, providing evidence for efficient interfacial thermal transport in expanded graphite composites. Field emission environmental scanning electron microscopy (FE−ESEM) is used to provide a detailed understanding of the interpenetrating graphene−polymer structure in the expanded graphite composite. These results open up novel avenues for achieving high thermal conductivity polymer composites.more » « less