skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large Enhancement in Thermal Conductivity of Solvent−Cast Expanded Graphite/Polyetherimide Composites
We demonstrate in this work that expanded graphite (EG) can lead to a very large enhancement in thermal conductivity of polyetherimide−graphene and epoxy−graphene nanocomposites prepared via solvent casting technique. A k value of 6.6 W⋅m−1⋅K−1 is achieved for 10 wt% composition sample, representing an enhancement of ~2770% over pristine polyetherimide (k~0.23 W⋅m−1⋅K−1). This extraordinary enhancement in thermal conductivity is shown to be due to a network of continuous graphene sheets over long−length scales, resulting in low thermal contact resistance at bends/turns due to the graphene sheets being covalently bonded at such junctions. Solvent casting offers the advantage of preserving the porous structure of expanded graphite in the composite, resulting in the above highly thermally conductive interpenetrating network of graphene and polymer. Solvent casting also does not break down the expanded graphite particles due to minimal forces involved, allowing for efficient heat transfer over long−length scales, further enhancing overall composite thermal conductivity. Comparisons with a recently introduced effective medium model show a very high value of predicted particle–particle interfacial conductance, providing evidence for efficient interfacial thermal transport in expanded graphite composites. Field emission environmental scanning electron microscopy (FE−ESEM) is used to provide a detailed understanding of the interpenetrating graphene−polymer structure in the expanded graphite composite. These results open up novel avenues for achieving high thermal conductivity polymer composites.  more » « less
Award ID(s):
1847129
PAR ID:
10394686
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
12
Issue:
11
ISSN:
2079-4991
Page Range / eLocation ID:
1877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To achieve polymer–graphene nanocomposites with high thermal conductivity ( k ), it is critically important to achieve efficient thermal coupling between graphene and the surrounding polymer matrix through effective functionalization schemes. In this work, we demonstrate that edge-functionalization of graphene nanoplatelets (GnPs) can enable a larger enhancement of effective thermal conductivity in polymer–graphene nanocomposites relative to basal plane functionalization. Effective thermal conductivity for the edge case is predicted, through molecular dynamics simulations, to be up to 48% higher relative to basal plane bonding for 35 wt% graphene loading with 10 layer thick nanoplatelets. The beneficial effect of edge bonding is related to the anisotropy of thermal transport in graphene, involving very high in-plane thermal conductivity (∼2000 W m −1 K −1 ) compared to the low out-of-plane thermal conductivity (∼10 W m −1 K −1 ). Likewise, in multilayer graphene nanoplatelets (GnPs), the thermal conductivity across the layers is even lower due to the weak van der Waals bonding between each pair of layers. Edge functionalization couples the polymer chains to the high in-plane thermal conduction pathway of graphene, thus leading to overall high thermal conductivity of the composite. Basal-plane functionalization, however, lowers the thermal resistance between the polymer and the surface graphene sheets of the nanoplatelet only, causing the heat conduction through inner layers to be less efficient, thus resulting in the basal plane scheme to be outperformed by the edge scheme. The present study enables fundamentally novel pathways for achieving high thermal conductivity polymer nanocomposites. 
    more » « less
  2. Abstract Understanding thermal transport mechanisms in polymeric composites allows us to expand the boundaries of thermal conductivity in them, either increasing it for more efficient heat dissipation or decreasing it for better thermal insulation. But, these mechanisms are not fully understood. Systematic experimental investigations remain limited. Practical strategies to tune the interfacial thermal resistance (ITR) between fillers and polymers and the thermal conductivity of composites remain elusive. Here, we studied the thermal transport in representative polymer composites, using polyethylene (PE) or polyaniline (PANI) as matrices and graphite as fillers. PANI, with aromatic rings in its backbone, interacts with graphite through strong noncovalent π–π stacking interactions, whereas PE lacks such interactions. We can then quantify how π–π stacking interactions between graphite and polymers enhance thermal transport in composites. PE/graphite and PANI/graphite composites with the same 1.5% filler volume fractions show a ∼22.82% and ∼34.85% enhancement in thermal conductivity compared to pure polymers, respectively. Calculated ITRs in PE/graphite and PANI/graphite are ∼6×10−8 m2 K W−1 and ∼1×10−8 m2 K W−1, respectively, highlighting how π–π stacking interactions reduce ITR. Molecular dynamics (MD) simulations suggest that π–π stacking interactions between PANI chains and graphite surfaces enhance alignment of PANI's aromatic rings with graphite surfaces. This allows more carbon atoms from PANI chains to interact with graphite surfaces at a shorter distance compared to PE chains. Our work indicates that tuning the π–π stacking interactions between polymers and fillers is an effective approach to reduce the ITR and enhance the thermal conductivity of composites. 
    more » « less
  3. To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model. Measured thermal conductivities of ~1.38 ± 0.22 W m−1K−1in PVA/defective filler composites is higher than those of ~0.86 ± 0.21 W m−1K−1in PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. We identify how thermal transport occurs across heterogeneous interfaces. Thermal transport measurements, neutron scattering, quantum mechanical modeling, and molecular dynamics simulations reveal that vibrational coupling between PVA and defective fillers at PVA/filler interfaces enhances thermal conductivity, suggesting that defects in polymer composites improve thermal transport by promoting this vibrational coupling. 
    more » « less
  4. null (Ed.)
    Thermal conductivity (k) of polymers is usually limited to low values of ~0.5 Wm−1K−1 in comparison to metals (>20 Wm−1K−1). The goal of this work is to enhance thermal conductivity (k) of polyethylene–graphene nanocomposites through simultaneous alignment of polyethylene (PE) lamellae and graphene nanoplatelets (GnP). Alignment is achieved through the application of strain. Measured values are compared with predictions from effective medium theory. A twin conical screw micro compounder is used to prepare polyethylene–graphene nanoplatelet (PE-GnP) composites. Enhancement in k value is studied for two different compositions with GnP content of 9 wt% and 13 wt% and for applied strains ranging from 0% to 300%. Aligned PE-GnP composites with 13 wt% GnP displays ~1000% enhancement in k at an applied strain of 300%, relative to k of pristine unstrained polymer. Laser Scanning Confocal Microscopy (LSCM) is used to quantitatively characterize the alignment of GnP flakes in strained composites; this measured orientation is used as an input for effective medium predictions. These results have important implications for thermal management applications. 
    more » « less
  5. Abstract Gallium‐based liquid metal (LM) composite with metallic fillers is an emerging class of thermal interface materials (TIMs), which are widely applied in electronics and power systems to improve their performance. In situ alloying between gallium and many metallic fillers like copper and silver, however, leads to a deteriorated composite stability. This paper presents an interfacial engineering approach using 3‐chloropropyltriethoxysilane (CPTES) to serve as effective thermal linkers and diffusion barriers at the copper‐gallium oxide interfaces in the LM matrix, achieving an enhancement in both thermal conductivity and stability of the composite. By mixing LM with copper particles modified by CPTES, a thermal conductivity (κ) as high as 65.9 W m−1K−1is achieved. In addition, κ can be tuned by altering the terminal groups of silane molecules, demonstrating the flexibility of this approach. The potential use of such composite as a TIM is also shown in the heat dissipation of a computer central processing unit. While most studies on LM‐based composites enhance the material performance via direct mixing of various fillers, this work provides a different approach to fabricate high‐performance LM‐based composites and may further advance their applications in various areas including thermal management systems, flexible electronics, consumer electronics, and biomedical systems. 
    more » « less