skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1847765

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Correlative scanning probe microscopy of chemical identity, surface potential, and mechanical properties provide insight into the structure–function relationships of nanomaterials. However, simultaneous measurement with comparable and high resolution is a challenge. We seamlessly integrated nanoscale photothermal infrared imaging with Coulomb force detection to form peak force infrared–Kelvin probe force microscopy (PFIR‐KPFM), which enables simultaneous nanomapping of infrared absorption, surface potential, and mechanical properties with approximately 10 nm spatial resolution in a single‐pass scan. MAPbBr3perovskite crystals of different degradation pathways were studied in situ. Nanoscale charge accumulations were observed in MAPbBr3near the boundary to PbBr2. PFIR‐KPFM also revealed correlations between residual charges and secondary conformation in amyloid fibrils. PFIR‐KPFM is applicable to other heterogeneous materials at the nanoscale for correlative multimodal characterizations. 
    more » « less
  2. Abstract Probing of polaritons in 2D materials is facilitated by spectroscopic imaging with nanometer spatial resolution. The combination of atomic force microscopy and infrared laser sources provides access for in situ mappings of phonon polaritons. Here, it is demonstrated that the photothermal‐based peak force infrared microscopy is capable of revealing phonon polaritons with high spatial resolution in isotopically pure hexagonal boron nitride microstructures without damaging the sample. To further improve the sensitivity, peak force infrared microscopy is enhanced with a scheme of multiple laser pulse excitation. The resulting method of multipulse peak force infrared microscopy can detect phonon polaritons with high sensitivity, which is particularly useful for probing polaritons in 2D materials with high damping characteristics. 
    more » « less
  3. For decades, infrared (IR) spectroscopy has advanced on two distinct frontiers: enhancing spatial resolution and broadening spectroscopic information. Although atomic force microscopy (AFM)-based IR microscopy overcomes Abbe’s diffraction limit and reaches sub-10 nm spatial resolutions, time-domain two-dimensional IR spectroscopy (2DIR) provides insights into molecular structures, mode coupling and energy transfers. Here we bridge the boundary between these two techniques and develop AFM-2DIR nanospectroscopy. Our method offers the spatial precision of AFM in combination with the rich spectroscopic information provided by 2DIR. This approach mechanically detects the sample’s photothermal responses to a tip-enhanced femtosecond IR pulse sequence and extracts spatially resolved spectroscopic information via FFTs. In a proof-of-principle experiment, we elucidate the anharmonicity of a carbonyl vibrational mode. Further, leveraging the near-field photons’ high momenta from the tip enhancement for phase matching, we photothermally probe hyperbolic phonon polaritons in isotope-enriched h10BN. Our measurements unveil an energy transfer between phonon polaritons and phonons, as well as among different polariton modes, possibly aided by scattering at interfaces. The AFM-2DIR nanospectroscopy enables the in situ investigations of vibrational anharmonicity, coupling and energy transfers in heterogeneous materials and nanostructures, especially suitable for unravelling the relaxation process in two-dimensional materials at IR frequencies. 
    more » « less
  4. Nanoscale infrared (nano-IR) microscopy enables label-free chemical imaging with a spatial resolution below Abbe's diffraction limit through the integration of atomic force microscopy and infrared radiation. Peak force infrared (PFIR) microscopy is one of the emerging nano-IR methods that provides non-destructive multimodal chemical and mechanical characterization capabilities using a straightforward photothermal signal generation mechanism. PFIR microscopy has been demonstrated to work for a wide range of heterogeneous samples, and it even allows operation in the fluid phase. However, the current PFIR microscope requires customized hardware configuration and software programming for real-time signal acquisition and processing, which creates a high barrier to PFIR implementation. In this communication, we describe a type of lock-in amplifier-based PFIR microscopy that can be assembled with generic, commercially available equipment without special hardware or software programming. We demonstrate this method on soft matters of structured polymer blends and blocks, as well as biological cells of E. coli . The lock-in amplifier-based PFIR reduces the entry barrier for PFIR microscopy and makes it a competitive nano-IR method for new users. 
    more » « less
  5. Peak force infrared (PFIR) microscopy is an emerging atomic force microscopy (AFM)-based infrared microscopy that bypasses Abbe's diffraction limit on spatial resolution. The PFIR microscopy utilizes a nanoscopically sharp AFM tip to mechanically detect the tip-enhanced infrared photothermal response of the sample in the time domain. The time-gated mechanical signals of cantilever deflections transduce the infrared absorption of the sample, delivering infrared imaging and spectroscopy capability at sub 10 nm spatial resolution. Both the infrared absorption response and mechanical properties of the sample are obtained in parallel while preserving the surface integrity of the sample. This review describes the constructions of the PFIR microscope and several variations, including multiple-pulse excitation, total internal reflection geometry, dual-color configuration, liquid-phase operations, and integrations with simultaneous surface potential measurement. Representative applications of PFIR microscopy are also included in this review. In the outlook section, we lay out several future directions of innovations in PFIR microscopy and applications in chemical and material research. 
    more » « less