Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Neutral three‐coordinate iron alkylidenes of the form PN−Fe=CHR have been proposed as viable candidates for alkene metathesis. Indeed, during the final stages of preparing this current study, a separate report disclosed that dearomatized PN−Fe‐alkyl complexes are active precatalysts for ring‐opening metathesis polymerization (ROMP) of norbornene implicating PN−Fe=CHR species as possible intermediates. In yet another separate report, we prepared Zn analogues of PN−Fe‐alkyl complexes and herein provide an account for the synthesis, characterization, and reactivity of some new iron complexes with the sametBu substituted PN platform.more » « less
-
Abstract This work details the synthesis, characterization, and catalytic activity of reactive low‐coordinate organozinc complexes. The complexes activate hydrogen and they appear to be more active in hydrogenation of ketones and imines than their tridentate pincer analogs. This is thought, in part, to be due to the lack of trailing third phosphorus arm present in previous work. DFT computations reveal a sigma‐bond metathesis mechanism is comparable to an alternative aromatization/dearomatization metal‐ligand cooperative mechanism.more » « less
-
Free, publicly-accessible full text available February 13, 2026
-
We report on the synthesis and characterization of Mn(III) chloride (MnIIICl3) complexes coordinated with N-oxide ylide ligands, namely trimethyl-N-oxide (Me3NO) and pyridine-N-oxide (PyNO). The compounds are reactive and, while isolable in the solid-state at room temperature, readily decompose into Mn(II). For example, “[MnIIICl3(ONMe3)n]” decomposes into the 2D polymeric network compound complex salt [MnII(µ-Cl)3MnII(µ-ONMe3)]n[MnII(µ-Cl)3]n·(Me3NO·HCl)3n (4). The reaction of MnIIICl3 with PyNO forms varied Mn(III) compounds with PyNO coordination and these react with hexamethylbenzene (HMB) to form the chlorinated organic product 1-cloromethyl-2,3,4,5,6-pentamethylbenzene (8). In contrast to N-oxide coordination to Mn(III), the reaction between [MnIIICl3(OPPh3)2] and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) resulted in electron transfer-forming d5 manganate of the [TEMPO] cation instead of TEMPO–Mn(III) adducts. The reactivity affected by N-oxide coordination is discussed through comparisons with other L–MnIIICl3 complexes within the context of reduction potential.more » « less
An official website of the United States government
