skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrogenative Catalysis with Three‐Coordinate Zinc Complexes Supported with PN Ligands is Enhanced Compared to PNP Analogs
Abstract This work details the synthesis, characterization, and catalytic activity of reactive low‐coordinate organozinc complexes. The complexes activate hydrogen and they appear to be more active in hydrogenation of ketones and imines than their tridentate pincer analogs. This is thought, in part, to be due to the lack of trailing third phosphorus arm present in previous work. DFT computations reveal a sigma‐bond metathesis mechanism is comparable to an alternative aromatization/dearomatization metal‐ligand cooperative mechanism.  more » « less
Award ID(s):
1847933 1855470 1919594
PAR ID:
10368833
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
40
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tethered tungsten‐alkylidenes bearing azoimido ligands (M≡Nγ‐Nβ=NαR) are synthesized, characterized, and tested as initiators for ring expansion metathesis polymerization (REMP). While these ligands are typically unstable and prone to dinitrogen loss, this work demonstrates that tethered alkylidene complexes bearing azoimido ligands are stable enough to be REMP initiators. Moreover, they are more efficient, long‐lived, and stereoselective than their corresponding imido derivatives (M≡NR). Density Functional Theory (DFT) analysis of the azoimido complexes provides insight into their unusual stability. 
    more » « less
  2. a) Abstract DnaK is a prokaryotic Hsp70 chaperone, with numerous functions in helping to fold nascent polypeptides and more generally in proteostasis. It also restores native structures to heat-shocked proteins in an ATP-hydrolysis-dependent manner. The structures of DnaK complexes with nucleotides, co-chaperones andsmallpeptides have already been resolved. However, there are no structures of DnaK complexes with larger, mostly folded substrates, such as firefly luciferase (Fluc, 61 kDa), which impedes the understanding of the mechanism through which DnaK refolds such large proteins. Here, we generated a model of a DnaK-firefly luciferase complex with Alphafold3, and examined its dynamics with all-atom molecular dynamics simulations. In this complex, Fluc is immobilized under the DnaK alpha-helical lid against the NBD, not the SBDβ, contrary to the data reported in the literature for model peptides. The DnaK lid is positioned strategically over Fluc’s helix 405-411, which we recently determined to be the first (and likely the only) helix melted in Fluc at 42 °C. We simulated the interaction between DnaK and the helix in its native and misfolded state and found that during the lid translocation toward the SBDβ, only the melted helix follows the lid and is actively pulled out from Fluc, while the native helix is not dislocated. These observations suggest a new model for the DnaK chaperone mechanism, where the alpha helical lid forms hydrogen bonds to the protein segment to be structurally tested. Lid pulls out only highly deformable misfolded helices, allowing them to refold into their native structures, and does not pull out those that are correctly folded because they are not deformable. Broader Audience Statementc) DnaK is a model chaperone, which can reactivate thermally denatured proteins. Even though a plethora of significant findings about DnaK structure, dynamics and interactions with its co-chaperone have been accumulated over 30 years, the exact molecular mechanism by which DnaK refolds misfolded proteins remains a mystery. This work exploited the ability of the Alphafold3 platform to generate an atomistic model for a complex between DnaK and Firefly luciferase and used molecular dynamics simulations to directly capture how DnaK may assist denatured proteins by mechanically pulling out their misfolded helices. This study provides a new insight into the DnaK mechanism. 
    more » « less
  3. Abstract CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1–5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6–8. Here, we determine the structures of theSynechocystistype III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2′-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes. 
    more » « less
  4. Abstract Organic compounds containing luminous rare-earth ions are of interest for numerous nanophotonic and plasmonic applications, including nanoscale lasers, biosensors, and optical magnetism studies. Optical studies of Eu3+complexes revealed that ultra-thin LB monolayers are highly luminescent even when deposited directly on plasmonic metal, which makes these materials very promising for plasmonic applications and studies, including control and enhancement of magnetic dipole emission with a plasmonic environment. In this work, we synthesize amphiphilic complexes with various rare-earth ions Nd3+, Yb3+, and DPT ligands and show that they all are suitable for monolayer or multilayer deposition with the Langmuir–Blodgett (LB) technique. Graphical abstract 
    more » « less
  5. Synthetic control of the influence of steric and electronic factors on the ultrafast (picosecond) isomerization of penta-coordinate ruthenium dithietene complexes (Ru((CF 3 ) 2 C 2 S 2 )(CO)(L) 2 , where L = a monodentate phosphine ligand) is reported. Seven new ruthenium dithietene complexes were prepared and characterized by single crystal X-ray diffraction. The complexes are all square pyramidal and differ only in the axial vs. equatorial coordination of the carbonyl ligand. Fourier Transform Infrared (FTIR) spectroscopy was used to study the ν (CO) bandshapes of the complexes in solution, and these reveal rapid exchange between two or three isomers of each complex. Isomerization is proposed to follow a Berry psuedorotation-like mechanism where a metastable, trigonal bipyramidal (TBP) intermediate is observed spectroscopically. Electronic tuning of the phosphine ligands L = PPh 3 , P(( p -Me)Ph) 3 , (( p -Cl)Ph) 3 , at constant cone angle is found to have little effect on the kinetics or thermodynamic stabilities of the axial, equatorial and TBP isomers of the differently substituted complexes. Steric tuning of the phosphine ligands over a range of phosphine cone angles (135 < θ < 165°) has a profound impact on the isomerization process, and in the limit of greatest steric bulk, the axial isomer is not observable. Temperature dependence of the FTIR spectra was used to obtain the relative thermodynamic stabilities of the different isomers of each of the seven ruthenium dithietene complexes. This study details how ligand steric effects can be used to direct the solution state dynamics on the picosecond time scale of discrete isomers energetically separated by <2.2 kcal mol −1 . This work provides the most detailed description to date of ultrafast isomerization in the ground states of transition metal complexes. 
    more » « less