Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Herein, we report the coordination-driven self-assembly of a diazaporphyrin plate and a porphyrin prism, made using the same Ru-benzo molecular clip and 2:1 diruthenium acceptor to tetrapyridyl donor stoichiometry, and discuss characterization techniques used to distinguish the two. We describe how 1H NMR data can distinguish between plate and prism geometries based on peak shifts and splitting in the context of molecular symmetries. DOSY spectra show changes in hydrodynamic radius from the monomeric porphyrin to the prism (4.78 Å to 15.2 Å) and diazaporphyrin to plate (6.02 Å to 12.2 Å) consistent with the increase in size upon assembly. High resolution mass spectrometry provides further evidence for plate and prism, where specific peaks at diagnostic m/z values unequivocally establish the stoichiometry of assembly. Electronic absorption spectroscopy revealed a marked increase in molar absorptivity upon self-assembly. These results establish how molecular characterization techniques may be used to distinguish between possible self-assembly outcomes when a given building block may be encoded with directionality that is suitable for more than one geometry.more » « lessFree, publicly-accessible full text available August 9, 2026
-
Free, publicly-accessible full text available June 2, 2026
-
Free, publicly-accessible full text available November 25, 2025
-
Free, publicly-accessible full text available November 22, 2025
-
Energy-relevant small molecule activations and related processes are often multi-electron in nature. Ferrocene is iconic for its well-behaved one-electron chemistry, and it is often used to impart redox activity to self-assembled architectures. When multiple ferrocenes are present as pendant groups in a single structure, they often behave as isolated sites with no separation of their redox events. Herein, we study a suite of molecules culminating in a self-assembled palladium(II) truncated tetrahedron (TT) with six pendant ferrocene moieties using the iron(III/II) couple to inform about the electronic structure and, in some cases, subsequent reactivity. Notably, although known ferrocene-containing metallacycles and cages show simple reversible redox chemistry, this TT undergoes a complex multi-step electrochemical mechanism upon oxidation. The electrochemical behavior was observed by voltammetric and spectroelectrochemical techniques and suggests that the initial Fc-centered oxidation is coupled to a subsequent change in species solubility and deposition of a film onto the working electrode, which is followed by a second separable electrochemical oxidation event. The complicated electrochemical behavior of this self-assembly reveals emergent properties resulting from organizing multiple ferrocene subunits into a discrete structure. We anticipate that such structures may provide the basis for multiple charge separation events to drive important processes related to energy capture, storage, and use, especially as the electronic communication between sites is further tuned.more » « less
-
Self-assembled metallacyles and cages formed via coordination chemistry have been used as catalysts to enforce 4H + /4e − reduction of oxygen to water with an emphasis on attenuating the formation of hydrogen peroxide. That said, the kinetically favored 2H + /2e − reduction to H 2 O 2 is critically important to industry. In this work we report the synthesis, characterization, and electrochemical benchmarking of a hexa-porphyrin cube which catalyses the electrochemical reduction of molecular oxygen to hydrogen peroxide. An established sub-component self-assembly approach was used to synthesize the cubic free-base porphryin topologies from 2-pyridinecarboxaldehyde, tetra-4-aminophenylporphryin (TAPP), and Fe(OTf) 2 (OTf − = trifluoromethansulfonate). Then, a tandem metalation/transmetallation was used to introduce Co( ii ) into the porphyrin faces of the cube, and exchange with the Fe( ii ) cations at the vertices, furnishing a tetrakaideca cobalt cage. Electron paramagnetic resonance studies on a Cu( ii )/Fe( ii ) analogue probed radical interactions which inform on electronic structure. The efficacy and selectivity of the CoCo-cube as a catalyst for hydrogen peroxide generation was investigated using hydrodynamic voltammetry, revealing a higher selectivity than that of a mononuclear Co( ii ) porphyrin (83% versus ∼50%) with orders of magnitude enhancement in standard rate constant ( k s = 2.2 × 10 2 M −1 s −1 versus k s = 3 × 10 0 M −1 s −1 ). This work expands the use of coordination-driven self-assembly beyond ORR to water by exploiting post-synthetic modification and structural control that is associated with this synthetic method.more » « less
-
We report the electrocatalytic Oxygen Reduction Reaction on a rigid Co( ii ) porphyrin prism scaffold bridged by Ag( i ) ions. The reactivity of this scaffold differs significantly from previous prism catalysts in that its selectivity is similar to that of monomer (∼35% H 2 O) yet it displays sluggish kinetics, with an order of magnitude lower k s of ∼0.5 M −1 s −1 . The deleterious cofacial effect is not simply due to metal–metal separation, which is similar to our most selective prism catalysts. Instead we conclude the structural rigidity is responsible for these differences.more » « less
An official website of the United States government
