Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents an analysis of the bed detecting capabilities of an ice sounding radar integrated onto a small, unmanned aircraft system (UAS). We evaluated the average signal-to-noise ratio (SNR) and signal-to-interference ratio (SINR) of radar measurements collected by the UAS over Greenland’s Helheim Glacier in 2022 and compared those to radar measurements collected over the same region using a radar-equipped Twin Otter around 2008. The statistical analysis presented of the SNR and the SINR shows that both systems have comparable bed detection capabilities. While the average SNR for all points considered is more than 20 dB higher for the Twin Otter system, the average SINR of both has a similar value. The overall average SINR is 9.79 dB for the UAS and 9.19 dB for the MA. As it is discussed in the paper, the lower SNR of the UAS system is attributed to its lower operating frequency, while the comparable SINR depends on various factors. The results of this paper have implications on planning and design of future field deployments.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract This paper provides an update and overview of the Center for Remote Sensing of Ice Sheets (CReSIS) radars and platforms, including representative results from these systems. CReSIS radar systems operate over a frequency range of 14–38 GHz. Each radar system's specific frequency band is driven by the required depth of signal penetration, measurement resolution, allocated frequency spectra, and antenna operating frequencies (often influenced by aircraft integration). We also highlight recent system advancements and future work, including (1) increasing system bandwidth; (2) miniaturizing radar hardware; and (3) increasing sensitivity. For platform development, we are developing smaller, easier to operate and less expensive unmanned aerial systems. Next-generation platforms will further expand accessibility to scientists with vertical takeoff and landing capabilities.more » « less
An official website of the United States government
