skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CReSIS airborne radars and platforms for ice and snow sounding
Abstract This paper provides an update and overview of the Center for Remote Sensing of Ice Sheets (CReSIS) radars and platforms, including representative results from these systems. CReSIS radar systems operate over a frequency range of 14–38 GHz. Each radar system's specific frequency band is driven by the required depth of signal penetration, measurement resolution, allocated frequency spectra, and antenna operating frequencies (often influenced by aircraft integration). We also highlight recent system advancements and future work, including (1) increasing system bandwidth; (2) miniaturizing radar hardware; and (3) increasing sensitivity. For platform development, we are developing smaller, easier to operate and less expensive unmanned aerial systems. Next-generation platforms will further expand accessibility to scientists with vertical takeoff and landing capabilities.  more » « less
Award ID(s):
1848210
PAR ID:
10157846
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annals of Glaciology
ISSN:
0260-3055
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the design and field test results for a 600 to 900 MHz polarimetric ice penetrating radar that can be operated on the ground or from an airborne platform. This system is part of a development to build a dual band (VHF/UHF) polarimetric ice sounding radar suite. The VHF radar operates over 140-215 MHz and is essentially a modified version of the multi-channel 3D imaging system reported in [1]. The UHF radar, the focus of this work, is an adaptation of the CReSIS Accumulation Radar, which operates from 600 to 900 MHz [2]. The radar system uses a custom-designed, dual-polarized 4x4 antenna array with increased peak and average transmit power levels, which together provide additional sensitivity with respect to prior system renditions. The UHF radar incorporates a new receiver [3] that uses controlled analog compression via RF limiters to increase the instantaneous dynamic range. We designed the instrument setup to be towed by snowmobiles and operated at nominal speeds of 4 to 8 m/s. The relatively slow motion helps improve SNR through an increase in coherent averaging due to the longer dwell time. Although the focus of the field test is on ground-based work, the electronics are designed to also support airborne operation. 
    more » « less
  2. {"Abstract":["This is an extracted data product for radar bed reflectivity from Whillans Ice Plain, West Antarctica. The original data are hosted by the Center for Remote Sensing of Ice Sheets (CReSIS; see associated citation below). The files here can be recalculate and are meant to be used within a set of computational notebooks here:https://doi.org/10.5281/zenodo.10859135\n\nThere are two csv files included here, each structured as a Pandas dataframe. You can load them in Python like:df = pd.read_csv('./Picked_Bed_Power.csv')\n\nThe first file, 'Picked_Bed_Power.csv' is the raw, uncorrected power from the radar image at the bed pick provided by CReSIS. There are also other useful variables for georeferencing, flight attributes, etc.\n\nThe second file, 'Processed_Reflectivity.csv' is processed from the first file. Processing includes: 1) a spreading correction; 2) an attenuation correction; and, 3) a power adjustment flight days based on compared power at crossover points. This file also has identifiers for regions including "grounded ice", "ungrounded ice", and "subglacial lakes"."]} 
    more » « less
  3. {"Abstract":["The accelerated melting of ice sheets in Greenland and Antarctica, driven by climate warming, is significantly contributing to global sea level rise. To better understand this phenomenon, airborne radars have been deployed to create echogram images that map snow accumulation patterns in these regions. Utilizing advanced radar systems developed by the Center for Remote Sensing and Integrated Systems (CReSIS), around 1.5 petabytes of climate data have been collected. However, extracting ice-related information, such as accumulation rates, remains limited due to the largely manual and time-consuming process of tracking internal layers in radar echograms. This highlights the need for automated solutions.\n\nMachine learning and deep learning algorithms are well-suited for this task, given their near human performance on optical images. The overlap between classical radar signal processing and machine learning techniques suggests that combining concepts from both fields could lead to optimized soluti 
    more » « less
  4. The Center for Oldest Ice Exploration (COLDEX) is a US initiative funded to search for climate records over the last 5 million years, including locating sites for an accessible continuous ice core going back 1.5 million years. As part of this effort, COLDEX has mapped the southern flank of Dome A, East Antarctica using an instrumented Basler, including dual frequency radar observations of the ice sheet and ice bed, as well as potential fields measurements (see presentation by Kerr in EGU session G4.3) across two field seasons from Amundsen-Scott South Pole Station. The aerogeophysical system included both the UTIG VHF MARFA radar system operating at 52.5-67.5 MHz, as well as a new large high resolution UHF array from CReSIS operating at 670-750 MHz operating simultaneously. A goal of this project was to obtain airborne repeat interferometry for segments of the survey, as well as directly feed ice sheet models using englacial isochrons (see Singh presentation in EGU session CR5.6). These goals lead to a survey explicitly designed around ice sheet flow lines. While prior work had sampled the region at lithospheric scales, the COLDEX survey had two components - the first was to map the region at crustal scales (line spacing of 15 km), and the second was to map subareas at ice sheet scales (line spacing of 3 km). Immediate observations include an extensive basal unit and strong discontinuity in englacial stratigraphy that runs across the survey area and appears correlated with changes in bed interface properties. The airborne campaign will be used to inform follow up ground campaigns to understand processes relevant for old ice preservation. 
    more » « less
  5. Abstract The generation of ultra-low-noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar and sensing systems1–3. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches4–7. Here we demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a complementary metal-oxide-semiconductor-compatible integrated photonic platform. Phase stability is provided by a large mode volume, planar-waveguide-based optical reference coil cavity8,9and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator10–12. Besides achieving record-low phase noise for integrated photonic mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications13
    more » « less