Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Unaweep Canyon (Uncompahgre Plateau, Colorado) represents an enigmatic landscape with a complex evolution. Interpretations for its origin have ranged from ancestral fluvial erosion in the late Cenozoic to glacial erosion in the Paleozoic, or some combination thereof, with significant implications for global climatic and large‐scale tectonic reconstructions. To address the conflicting interpretations, we acquired a high‐resolution seismic reflection profile to investigate the depth, structure, and sedimentary infill in the canyon. The data set is further complemented with an electrical resistivity survey. Integrated with other geophysical and geological data, the results show an overdeepened Precambrian basement with transverse U shape and support the hypothesis of a pre‐Quaternary glacial origin. Our data constitute the first detailed image of a buried pre‐Quaternary glacial valley in North America; if substantiated with core studies, these results have far‐reaching implications for our understanding of global ice houses as well as the tectonic conditions, enabling preservation of such systems.more » « less
-
Siliciclastic strata of the Colorado Plateau attract attention for their striking red, green, bleached, and variegated colors that potentially record both early depositional and later diagenetic events. We investigated the proximal-most strata of the Paradox Basin, from their onlap contact with the Precambrian basement of the Uncompahgre Plateau to the younger Cutler strata exposed within 10 km of the Uncompahgre Plateau to attempt to understand the significance of the striking colors that occur here. These strata preserve a complex geology associated with buried paleorelief and sediment-related permeability variations at a major basin-uplift interface. Strata exposed within ∼1.5 km of the onlap contact exhibit a pervasive drab color in contrast to the generally red colors that predominate farther from this front. In-between, strata commonly host variegated red/green/bleached intercalations. Thin-section petrography, SEM, XRD, Raman spectroscopy, Mössbauer spectroscopy, and whole-rock geochemistry of samples representing different color variations from demonstrate that water–rock interactions charged the rocks with Fe(II) that persists primarily in the phyllosilicate fraction. Color variations reflect grain-size differences that allowed the reduction of fluids from regional fault and basement/fill contacts to permeate coarser-grained Cutler sediments. Hematite and chlorite occur in both red and green sediments but are absent in the bleached sediments. Pervasive hematite in both red and green layers suggests that sediments were hematite-rich before later alteration. Chlorite and smectite are elevated in green samples and inversely correlated with biotite content. Green coloration is generally associated with 1) coarser grain sizes, 2) spatial association with basement contacts, 3) elevated smectite and/or chlorite, 4) less total Fe but greater Fe(II)/Fe(III) primarily in the phyllosilicate fraction, and 5) uranium enrichment. The bleached coloration reflects the removal of pigmentary Fe(III) oxide, while the green coloration is due to the removal of pigmentary hematite and the abundance of Fe(II)-bearing phyllosilicates. Abundant mixed-layer and swelling clays such as smectite, illite/smectite, and chlorite/smectite (including tosudite) dominate the mineralogy of the clay fraction. These results are consistent with other studies demonstrating fault-associated fluid alteration in the Paradox Basin region. However, the pervasive greening was not observed in many of these studies and appears to reflect the unique aspects of the paleovalley system and the importance of biotite alteration to Fe(II)-bearing phyllosilicates.more » « less
-
Abstract High-resolution passive seismic imaging of shallow subsurface structures is often challenged by the scarcity of coherent body-wave energy in ambient noise recorded at surface stations. We show that the autocorrelation (AC) of teleseismic P-wave coda extracted from just one month of continuous recording at 5 Hz geophones can overcome this limitation. We apply this method to investigate the longitudinal subsurface bedrock structure of Unaweep Canyon—a paleovalley in western Colorado (United States) with complex evolution. Both fluvial and glacial processes have been proposed to explain the canyon’s genesis and morphology. The teleseismic P-wave coda AC retrieves zero-offset reflections from the shallow (200–500 m depth) basement interface at 120 stations along a 5 km long profile. In addition, we invert interferometrically retrieved surface-wave dispersion for the shear-wave structure of the sedimentary fill. Combined interpretation of these results and other geophysical and well data suggests an overdeepened basement geometry most consistent with glacial processes.more » « less
-
Unaweep Canyon (Western Colorado, US) is an enigmatic alpine landform and hypothesized to represent a partially exhumed paleo valley which was glacially over-deepened in the late Paleozoic. Processing and interpretation of recently acquired 2D seismic reflection and refraction data support the concept of glacial over-deepening and indicate maximum bedrock depths of about 550 meters. Additionally, pronounced reflectors are observed within the sedimentary infill. The seismic data have also been subjected to surface wave analysis revealing a significant increase of the Vp/Vs ratio below a shallow (50 - 150 m depth) intra-sedimentary reflector. A large Vp/Vs ratio can be caused by both saturation and poor consolidation of dry low-porosity materials (e.g. dry sands).To investigate the potential occurrence of an aquifer associated with this interface, a high-density/long-offset electrical resistivity survey was conducted in fall 2019 along the seismic line. The maximum offset is 915 m at an electrode spacing of 5 meters, aiming at reaching depths of investigations between 150 and 200 meters. Inversion of the ERT data was initially conducted by means of smoothness-constrained algorithms. The imaging results revealed consistent structures with those resolved through seismic methods, at least within the required depth of investigation between 150 - 200 m. Furthermore, improvements in the resolution of the ERT imaging results was investigated after the inclusion of seismic interfaces as structural constraints in the inversion of the data. The comparison of the two approaches permitted to improve the interpretation of the ERT imaging results, which indicate low resistivities in the zone of high Vp/Vs ratios and thus strengthen the aquifer hypothesis. We present an integrated interpretation based on seismic structure, resistivity distribution, Vp and Vs velocities, and a distant well core. In a larger context, the results provide new insights on the subsurface hydrology in this arid part of the continental US as well as on the significance of multi-valued datasets for the interpretation and characterization of aquifers.more » « less
An official website of the United States government
