skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1849931

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To support human decision making with machine learning models, we often need to elucidate patterns embedded in the models that are unsalient, unknown, or counterintuitive to humans. While existing approaches focus on explaining machine predictions with real-time assistance, we explore model-driven tutorials to help humans understand these patterns in a training phase. We consider both tutorials with guidelines from scientific papers, analogous to current practices of science communication, and automatically selected examples from training data with explanations. We use deceptive review detection as a testbed and conduct large-scale, randomized human-subject experiments to examine the effectiveness of such tutorials. We find that tutorials indeed improve human performance, with and without real-time assistance. In particular, although deep learning provides superior predictive performance than simple models, tutorials and explanations from simple models are more useful to humans. Our work suggests future directions for human-centered tutorials and explanations towards a synergy between humans and AI. 
    more » « less
  2. Feature importance is commonly used to explain machine predictions. While feature importance can be derived from a machine learning model with a variety of methods, the consistency of feature importance via different methods remains understudied. In this work, we systematically compare feature importance from built-in mechanisms in a model such as attention values and post-hoc methods that approximate model behavior such as LIME. Using text classification as a testbed, we find that 1) no matter which method we use, important features from traditional models such as SVM and XGBoost are more similar with each other, than with deep learning models; 2) post-hoc methods tend to generate more similar important features for two models than built-in methods. We further demonstrate how such similarity varies across instances. Notably, important features do not always resemble each other better when two models agree on the predicted label than when they disagree. 
    more » « less