Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2024
-
Given raster imagery features and imperfect vector training labels with registration uncertainty, this paper studies a deep learning framework that can quantify and reduce the registration uncertainty of training labels as well as train neural network parameters simultaneously. The problem is important in broad applications such as streamline classification on Earth imagery or tissue segmentation on medical imagery, whereby annotating precise vector labels is expensive and time-consuming. However, the problem is challenging due to the gap between the vector representation of class labels and the raster representation of image features and the need for training neural networks with uncertain label locations. Existing research on uncertain training labels often focuses on uncertainty in label class semantics or characterizes label registration uncertainty at the pixel level (not contiguous vectors). To fill the gap, this paper proposes a novel learning framework that explicitly quantifies vector labels' registration uncertainty. We propose a registration-uncertainty-aware loss function and design an iterative uncertainty reduction algorithm by re-estimating the posterior of true vector label locations distribution based on a Gaussian process. Evaluations on real-world datasets in National Hydrography Dataset refinement show that the proposed approach significantly outperforms several baselines in the registration uncertainty estimations performance and classification performance.more » « less
-
null (Ed.)Spatial classification with limited observations is important in geographical applications where only a subset of sensors are deployed at certain spots or partial responses are collected in field surveys. For example, in observation-based flood inundation mapping, there is a need to map the full flood extent on geographic terrains based on earth imagery that partially covers a region. Existing research mostly focuses on addressing incomplete or missing data through data cleaning and imputation or modeling missing values as hidden variables in the EM algorithm. These methods, however, assume that missing feature observations are rare and thus are ineffective in problems whereby the vast majority of feature observations are missing. To address this issue, we recently proposed a new approach that incorporates physics-aware structural constraint into the model representation. We design efficient learning and inference algorithms. This paper extends our recent approach by allowing feature values of samples in each class to follow a multi-modal distribution. Evaluations on real-world flood mapping applications show that our approach significantly outperforms baseline methods in classification accuracy, and the multi-modal extension is more robust than our early single-modal version. Computational experiments show that the proposed solution is computationally efficient on large datasets.more » « less
-
Spatial classification with limited feature observations has been a challenging problem in machine learning. The problem exists in applications where only a subset of sensors are deployed at certain regions or partial responses are collected in field surveys. Existing research mostly focuses on addressing incomplete or missing data, e.g., data cleaning and imputation, classification models that allow for missing feature values, or modeling missing features as hidden variables and applying the EM algorithm. These methods, however, assume that incomplete feature observations only happen on a small subset of samples, and thus cannot solve problems where the vast majority of samples have missing feature observations. To address this issue, we propose a new approach that incorporates physics-aware structural constraints into the model representation. Our approach assumes that a spatial contextual feature is observed for all sample locations and establishes spatial structural constraint from the spatial contextual feature map. We design efficient algorithms for model parameter learning and class inference. Evaluations on real-world hydrological applications show that our approach significantly outperforms several baseline methods in classification accuracy, and the proposed solution is computationally efficient on a large data volume.more » « less