Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Phago-mixotrophy, the combination of photoautotrophy and phagotrophy in mixoplankton, organisms that can combine both trophic strategies, have gained increasing attention over the past decade. It is now recognized that a substantial number of protistan plankton species engage in phago-mixotrophy to obtain nutrients for growth and reproduction under a range of environmental conditions. Unfortunately, our current understanding of mixoplankton in aquatic systems significantly lags behind our understanding of zooplankton and phytoplankton, limiting our ability to fully comprehend the role of mixoplankton (and phago-mixotrophy) in the plankton food web and biogeochemical cycling. Here, we put forward five research directions that we believe will lead to major advancement in the field: (i) evolution: understanding mixotrophy in the context of the evolutionary transition from phagotrophy to photoautotrophy; (ii) traits and trade-offs: identifying the key traits and trade-offs constraining mixotrophic metabolisms; (iii) biogeography: large-scale patterns of mixoplankton distribution; (iv) biogeochemistry and trophic transfer: understanding mixoplankton as conduits of nutrients and energy; and (v) in situ methods: improving the identification of in situ mixoplankton and their phago-mixotrophic activity.more » « less
-
Abstract The ocean carbonate system is critical to monitor because it plays a major role in regulating Earth's climate and marine ecosystems. It is monitored using a variety of measurements, and it is commonly understood that all components of seawater carbonate chemistry can be calculated when at least two carbonate system variables are measured. However, several recent studies have highlighted systematic discrepancies between calculated and directly measured carbonate chemistry variables and these discrepancies have large implications for efforts to measure and quantify the changing ocean carbon cycle. Given this, the Ocean Carbonate System Intercomparison Forum (OCSIF) was formed as a working group through the Ocean Carbon and Biogeochemistry program to coordinate and recommend research to quantify and/or reduce uncertainties and disagreements in measurable seawater carbonate system measurements and calculations, identify unknown or overlooked sources of these uncertainties, and provide recommendations for making progress on community efforts despite these uncertainties. With this paper we aim to (1) summarize recent progress toward quantifying and reducing carbonate system uncertainties; (2) advocate for research to further reduce and better quantify carbonate system measurement uncertainties; (3) present a small amount of new data, metadata, and analysis related to uncertainties in carbonate system measurements; and (4) restate and explain the rationales behind several OCSIF recommendations. We focus on open ocean carbonate chemistry, and caution that the considerations we discuss become further complicated in coastal, estuarine, and sedimentary environments.more » « less
-
Abstract The decline in global emissions of carbon dioxide due to the COVID‐19 pandemic provides a unique opportunity to investigate the sensitivity of the global carbon cycle and climate system to emissions reductions. Recent efforts to study the response to these emissions declines has not addressed their impact on the ocean, yet ocean carbon absorption is particularly susceptible to changing atmospheric carbon concentrations. Here, we use ensembles of simulations conducted with an Earth system model to explore the potential detection of COVID‐related emissions reductions in the partial pressure difference in carbon dioxide between the surface ocean and overlying atmosphere (ΔpCO2), a quantity that is regularly measured. We find a unique fingerprint in global‐scale ΔpCO2that is attributable to COVID, though the fingerprint is difficult to detect in individual model realizations unless we force the model with a scenario that has four times the observed emissions reduction.more » « less
-
Protist plankton can be divided into three main groups: phytoplankton, zooplankton, and mixoplankton.In situmethods for studying phytoplankton and zooplankton are relatively straightforward since they generally target chlorophyll/photosynthesis or grazing activity, while the integration of both processes within a single cell makes mixoplankton inherently challenging to study. As a result, we understand less about mixoplankton physiology and their role in food webs, biogeochemical cycling, and ecosystems compared to phytoplankton and zooplankton. In this paper, we posit that by merging conventional techniques, such as microscopy and physiological data, with innovative methods likein situsingle-cell sorting and omics datasets, in conjunction with a diverse array of modeling approaches ranging from single-cell modeling to comprehensive Earth system models, we can propel mixoplankton research into the forefront of aquatic ecology. We present eight crucial research questions pertaining to mixoplankton and mixotrophy, and briefly outline a combination of existing methods and models that can be used to address each question. Our intent is to encourage more interdisciplinary research on mixoplankton, thereby expanding the scope of data acquisition and knowledge accumulation for this understudied yet critical component of aquatic ecosystems.more » « less
-
Biogeochemical cycles constitute Earth’s life support system and distinguish our planet from others in this solar system. Microorganisms are the primary drivers of these cycles. Understanding the controls on marine microbial dynamics and how microbes will respond to environmental change is essential for building and assessing model-based forecasts and generating robust projections of climate change impacts on ocean productivity and biogeochemical cycles. An international community effort has been underway to create a global-scale marine microbial biogeochemistry research program to tackle gaps in this understanding. The BioGeoSCAPES: Ocean Metabolism and Nutrient Cycles on a Changing Planet program will identify and quantify how marine microbes adjust to a changing climate and assess the consequences for global biogeochemical cycles. This article summarizes the ongoing efforts to launch BioGeoSCAPES.more » « less
-
Abstract. The presented pilot for the Synthesis Product for Ocean Time Series (SPOTS) includes data from 12 fixed ship-based time-series programs. The related stations represent unique open-ocean and coastal marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time series used include a variety of temporal resolutions (monthly, seasonal, or irregular), time ranges (10–36 years), and bottom depths (80–6000 m), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmonized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. The most recently applied methods of the time-series programs usually follow the recommendations outlined by the Bermuda Time Series Workshop report (Lorenzoni and Benway, 2013), which is used as the main reference for “method recommendations by prevalent initiatives in the field”. However, measurements of dissolved oxygen and pH, in particular, still show room for improvement. Additional data quality descriptors include precision and accuracy estimates, indicators for data variability, and offsets compared to a reference and widely recognized data product for the global ocean: the GLobal Ocean Data Analysis Project (GLODAP). Generally, these descriptors indicate a high level of continuity in measurement quality within time-series programs and a good consistency with the GLODAP data product, even though robust comparisons to the latter are limited. The data are available as (i) a merged comma-separated file that is compliant with the World Ocean Circulation Experiment (WOCE) exchange format and (ii) a format dependent on user queries via the Environmental Research Division's Data Access Program (ERDDAP) server of the Global Ocean Observing System (GOOS). The pilot increases the data utility, findability, accessibility, interoperability, and reusability following the FAIR philosophy, enhancing the readiness of biogeochemical time series. It facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, SPOTS, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product). Aside from the actual data compilation, the pilot project produced suggestions for reporting metadata, implementing quality control measures, and making estimations about uncertainty. These recommendations aim to encourage the community to adopt more consistent and uniform practices for analysis and reporting and to update these practices regularly. The detailed recommendations, links to the original time-series programs, the original data, their documentation, and related efforts are available on the SPOTS website. This site also provides access to the data product (DOI: https://doi.org/10.26008/1912/bco-dmo.896862.2, Lange et al., 2024) and ancillary data.more » « less
-
The field of oceanography is transitioning from data-poor to data-rich, thanks in part to increased deployment ofin-situplatforms and sensors, such as those that instrument the US-funded Ocean Observatories Initiative (OOI). However, generating science-ready data products from these sensors, particularly those making biogeochemical measurements, often requires extensive end-user calibration and validation procedures, which can present a significant barrier. Openly available community-developed and -vetted Best Practices contribute to overcoming such barriers, but collaboratively developing user-friendly Best Practices can be challenging. Here we describe the process undertaken by the NSF-funded OOI Biogeochemical Sensor Data Working Group to develop Best Practices for creating science-ready biogeochemical data products from OOI data, culminating in the publication of the GOOS-endorsed OOI Biogeochemical Sensor Data Best Practices and User Guide. For Best Practices related to ocean observatories, engaging observatory staff is crucial, but having a “user-defined” process ensures the final product addresses user needs. Our process prioritized bringing together a diverse team and creating an inclusive environment where all participants could effectively contribute. Incorporating the perspectives of a wide range of experts and prospective end users through an iterative review process that included “Beta Testers’’ enabled us to produce a final product that combines technical information with a user-friendly structure that illustrates data analysis pipelines via flowcharts and worked examples accompanied by pseudo-code. Our process and its impact on improving the accessibility and utility of the end product provides a roadmap for other groups undertaking similar community-driven activities to develop and disseminate new Ocean Best Practices.more » « less
-
Abstract. Metaproteomics is an increasingly popular methodology that provides information regarding the metabolic functions of specific microbial taxa and has potential for contributing to ocean ecology and biogeochemical studies. A blinded multi-laboratory intercomparison was conducted to assess comparability and reproducibility of taxonomic and functional results and their sensitivity to methodological variables. Euphotic zone samples from the Bermuda Atlantic Time-Series Study in the North Atlantic Ocean collected by in situ pumps and the AUV Clio were distributed with a paired metagenome, and one-dimensional liquid chromatographic data dependent acquisition mass spectrometry analyses was stipulated. Analysis of mass spectra from seven laboratories through a common informatic pipeline identified a shared set of 1056 proteins from 1395 shared peptides constituents. Quantitative analyses showed good reproducibility: pairwise regressions of spectral counts between laboratories yielded R2 values ranging from 0.43 to 0.83, and a Sørensen similarity analysis of the top 1,000 proteins revealed 70–80 % similarity between laboratory groups. Taxonomic and functional assignments showed good coherence between technical replicates and different laboratories. An informatic intercomparison study, involving 10 laboratories using 8 software packages successfully identified thousands of peptides within the complex metaproteomic datasets, demonstrating the utility of these software tools for ocean metaproteomic research. Future efforts could examine reproducibility in deeper metaproteomes, examine accuracy in targeted absolute quantitation analyses, and develop standards for data output formats to improve data interoperability. Together, these results demonstrate the reproducibility of metaproteomic analyses and their suitability for microbial oceanography research including integration into global scale ocean surveys and ocean biogeochemical models.more » « less
An official website of the United States government
