Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Field studies of cleaning mutualisms use a variety of methods to quantify behavioral dynamics. Studies in marine systems typically utilize data recorded by human observers on scuba or snorkel or via remote underwater video. The effects of these different methods on cleaner–client behaviors have not been rigorously assessed. We quantified cleaner–client interactions at 13 bluestreak cleaner wrasse (Labroides dimidiatus) cleaning stations in Moorea, French Polynesia using hand‐held and remote videos. We found that cleaning, cheating, and client posing rates, cleaning duration, and client species richness were all greater in the remote than in the hand‐held videos, suggesting that human presence disrupts cleaning interactions by inducing antipredator responses among clients. Some metrics, such as the ratio of cleaner chasing to cleaning behavior and the cleaners' benthic feeding rate, were higher for the hand‐held than the remote videos, possibly due to limited access of cleaners to clients in the presence of humans. Other metrics, such as cleaner and client chasing rates, the ratio of cleaning to cheating behaviors, and the duration of cleaner chases, did not differ between video types. Finally, piscivorous clients were far more abundant in the remote than the hand‐held videos, suggesting that piscivores are particularly sensitive to human presence, likely because they are targeted by fishers. Overall, our study suggests that human presence can bias studies of cleaning behavior and cleaner–client interactions, and that remote cameras should be used to conduct behavioral studies. These potential biases should be considered when interpreting existing behavioral data.more » « lessFree, publicly-accessible full text available March 1, 2026
-
ABSTRACT We observed a novel, nocturnal cleaning interaction between a cleaner shrimp (GenusUrocaridella) and the giant moray eel (Gymnothorax javanicus) on a lagoonal patch reef in Moorea, French Polynesia. Over the course of an 85‐min foraging bout (recorded on video by a snorkeler), we observed three separate, stereotyped cleaning interactions betweenG. javanicusand a cleaner shrimp in the genus Urocaridella (which surveys of Moorea biodiversity previously visually identified asUrocaridella antonbruunii). During these interactions, the shrimp would slowly crawl along one of the eel's flanks towards its head, enter its mouth, emerge on the other side of its head, then crawl back towards the reef along the eel's opposite flank, often causing it to jolt in response. On each of the visits, the moray spent roughly 9–12 min at the cleaning station and was observed being cleaned for a total of 62 s. Although this was a chance observation of only a few instances of cleaning, it may have several important implications for our understanding of the behavioral ecology of cleaning mutualisms, including (1) indicating potential temporal trade‐offs between being cleaned and foraging in eels, (2) suggesting a degree of temporal niche partitioning among sympatric cleaner species and (3) updating our understanding of cleaner‐client communication, given the nocturnal nature of our observations.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Standing dead structures of habitat‐forming organisms (e.g., dead trees, coral skeletons, oyster shells) killed by a disturbance are material legacies that can affect ecosystem recovery processes. Many ecosystems are subject to different types of disturbance that either remove biogenic structures or leave them intact. Here we used a mathematical model to quantify how the resilience of coral reef ecosystems may be differentially affected following structure‐removing and structure‐retaining disturbance events, focusing in particular on the potential for regime shifts from coral to macroalgae. We found that dead coral skeletons could substantially diminish coral resilience if they provided macroalgae refuge from herbivory, a key feedback associated with the recovery of coral populations. Our model shows that the material legacy of dead skeletons broadens the range of herbivore biomass over which coral and macroalgae states are bistable. Hence, material legacies can alter resilience by modifying the underlying relationship between a system driver (herbivory) and a state variable (coral cover).more » « less
-
Abstract Multispecies mutualisms are embedded in a network of interactions that include predation, yet the effects of predation on mutualism function have not been well integrated into mutualism theory. Where predators have been considered, the common prediction is that predators reduce mutualist abundance and, as a consequence, decrease service provision. Here, we use a mathematical model of a predatory fish that consumes two competing coral mutualists to show that predators can also have indirect positive effects on hosts when they preferentially consume competitively dominant mutualists that are also lower in quality. In these cases, predation reverses the outcome of competition, allowing the higher quality mutualist to dominate and enhancing host performance. The direction and strength of predator effects depend on asymmetries in mutualist competition, service provision, and predation vulnerability. Our findings suggest that when the strength of predation shifts (e.g., due to exploitative harvest of top predators, introduction of new species, or range shifts in response to climate change), mutualist communities will exhibit dynamic responses with nonmonotonic effects on host service provision.more » « less
-
Abstract Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.more » « less
-
Free, publicly-accessible full text available April 2, 2026
-
Photogrammetry is an emerging tool that allows scientists to measure important habitat characteristics of coral reefs at multiple spatial scales. However, the ecological benefits of using photogrammetry to measure reef habitat have rarely been assessed through direct comparison to traditional methods, especially in settings where manual measurements are more feasible and affordable. Here, we applied multiple methods to measure coral colonies (Pocillopora spp.) and asked whether photogrammetric or manual observations better describe short-term colony growth and links between colony size and the biodiversity of coral-dwelling fishes and invertebrates. Using photogrammetry, we measured patterns in changes in coral volume that were otherwise obscured by high variation from manual measurements. Additionally, we found that photogrammetry-based estimates of colony skeletal volume best predicted the abundance and richness of animals living within the coral. This study highlights that photogrammetry can improve descriptions of coral colony size, growth, and associated biodiversity compared to manual measurements.more » « less
-
A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative—depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.more » « less
An official website of the United States government
