Standing dead structures of habitat‐forming organisms (e.g., dead trees, coral skeletons, oyster shells) killed by a disturbance are material legacies that can affect ecosystem recovery processes. Many ecosystems are subject to different types of disturbance that either remove biogenic structures or leave them intact. Here we used a mathematical model to quantify how the resilience of coral reef ecosystems may be differentially affected following structure‐removing and structure‐retaining disturbance events, focusing in particular on the potential for regime shifts from coral to macroalgae. We found that dead coral skeletons could substantially diminish coral resilience if they provided macroalgae refuge from herbivory, a key feedback associated with the recovery of coral populations. Our model shows that the material legacy of dead skeletons broadens the range of herbivore biomass over which coral and macroalgae states are bistable. Hence, material legacies can alter resilience by modifying the underlying relationship between a system driver (herbivory) and a state variable (coral cover).
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Multispecies mutualisms are embedded in a network of interactions that include predation, yet the effects of predation on mutualism function have not been well integrated into mutualism theory. Where predators have been considered, the common prediction is that predators reduce mutualist abundance and, as a consequence, decrease service provision. Here, we use a mathematical model of a predatory fish that consumes two competing coral mutualists to show that predators can also have indirect positive effects on hosts when they preferentially consume competitively dominant mutualists that are also lower in quality. In these cases, predation reverses the outcome of competition, allowing the higher quality mutualist to dominate and enhancing host performance. The direction and strength of predator effects depend on asymmetries in mutualist competition, service provision, and predation vulnerability. Our findings suggest that when the strength of predation shifts (e.g., due to exploitative harvest of top predators, introduction of new species, or range shifts in response to climate change), mutualist communities will exhibit dynamic responses with nonmonotonic effects on host service provision.
-
Abstract Remote coral reefs are thought to be more resilient to climate change due to their isolation from local stressors like fishing and pollution. We tested this hypothesis by measuring the relationship between local human influence and coral community resilience. Surprisingly, we found no relationship between human influence and resistance to disturbance and some evidence that areas with greater human development may recover from disturbance faster than their more isolated counterparts. Our results suggest remote coral reefs are imperiled by climate change, like so many other geographically isolated ecosystems, and are unlikely to serve as effective biodiversity arks. Only drastic and rapid cuts in greenhouse gas emissions will ensure coral survival. Our results also indicate that some reefs close to large human populations were relatively resilient. Focusing research and conservation resources on these more accessible locations has the potential to provide new insights and maximize conservation outcomes.
-
Photogrammetry is an emerging tool that allows scientists to measure important habitat characteristics of coral reefs at multiple spatial scales. However, the ecological benefits of using photogrammetry to measure reef habitat have rarely been assessed through direct comparison to traditional methods, especially in settings where manual measurements are more feasible and affordable. Here, we applied multiple methods to measure coral colonies (Pocillopora spp.) and asked whether photogrammetric or manual observations better describe short-term colony growth and links between colony size and the biodiversity of coral-dwelling fishes and invertebrates. Using photogrammetry, we measured patterns in changes in coral volume that were otherwise obscured by high variation from manual measurements. Additionally, we found that photogrammetry-based estimates of colony skeletal volume best predicted the abundance and richness of animals living within the coral. This study highlights that photogrammetry can improve descriptions of coral colony size, growth, and associated biodiversity compared to manual measurements.more » « less
-
A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative—depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.more » « less