Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Marine N2-fixing cyanobacteria, including the unicellular genus Crocosphaera, are considered keystone species in marine food webs. Crocosphaera are globally distributed and provide new sources of nitrogen and carbon, which fuel oligotrophic microbial communities and upper trophic levels. Despite their ecosystem importance, only one pelagic, oligotrophic, phycoerythrin-rich species, Crocosphaera watsonii, has ever been identified and characterized as widespread. Herein, we present a new species, named Crocosphaera waterburyi, enriched from the North Pacific Ocean. C. waterburyi was found to be phenotypically and genotypically distinct from C. watsonii, active in situ, distributed globally, and preferred warmer temperatures in culture and the ocean. Additionally, C. waterburyi was detectable in 150- and 4000-meter sediment export traps, had a relatively larger biovolume than C. watsonii, and appeared to aggregate in the environment and laboratory culture. Therefore, it represents an additional, previously unknown link between atmospheric CO2 and N2 gas and deep ocean carbon and nitrogen export and sequestration.more » « less
-
ABSTRACT The marine microalgaEmiliania huxleyiis widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host‐virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses. We showed that viral infection noticeably reduced photosynthesis and growth of the alga but was less harmful to its physiology under conditions where UVR influenced viral DNA expression. In the virus‐infected cells, the combination of UVR and warming (+4°C) led to a 13‐fold increase in photosynthetic carbon fixation rate, with warming alone contributing a change of about 5–7‐fold. This was attributed to upregulated expression of genes related to carboxylation and light‐harvesting proteins under the influence of UVR, and to warming‐reduced infectivity. In the absence of UVR, viral infection downregulated the metabolic pathways of photosynthesis and fatty acid degradation. Our results suggest that solar UV exposure in a warming ocean can reduce the severity of viral attack on this ecologically important microalga, potentially prolonging its blooms.more » « lessFree, publicly-accessible full text available November 4, 2025
-
Abstract The colony-forming cyanobacteria Trichodesmium spp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered. To address these questions, we describe Trichodesmium pangenomic potential via significantly improved genomic assemblies from two isolates and 15 new >50% complete Trichodesmium metagenome-assembled genomes from hand-picked, Trichodesmium colonies spanning the Atlantic Ocean. Phylogenomics identified ~four N2 fixing clades of Trichodesmium across the transect, with T. thiebautii dominating the colony-specific reads. Pangenomic analyses showed that all T. thiebautii MAGs are enriched in COG defense mechanisms and encode a vertically inherited Type III-B Clustered Regularly Interspaced Short Palindromic Repeats and associated protein-based immunity system (CRISPR-Cas). Surprisingly, this CRISPR-Cas system was absent in all T. erythraeum genomes, vertically inherited by T. thiebautii, and correlated with increased signatures of horizontal gene transfer. Additionally, the system was expressed in metaproteomic and transcriptomic datasets and CRISPR spacer sequences with 100% identical hits to field-assembled, putative phage genome fragments were identified. While the currently CO2-limited T. erythraeum is expected to be a ‘winner’ of anthropogenic climate change, their genomic dearth of known phage resistance mechanisms, compared to T. thiebautii, could put this outcome in question. Thus, the clear demarcation of T. thiebautii maintaining CRISPR-Cas systems, while T. erythraeum does not, identifies Trichodesmium as an ecologically important CRISPR-Cas model system, and highlights the need for more research on phage-Trichodesmium interactions.more » « less
-
Summary In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)‐fixing cyanobacteriumTrichodesmiumcreate microscale nutrient‐rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology ofTrichodesmium, often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2fixation in cultures ofTrichodesmiumwithout impairing growth rate, suggesting thatTrichodesmiumcan use TMA as an alternate N source. In this study,15N‐TMA DNA stable isotope probing (SIP) of aTrichodesmiumenrichment was employed to further investigate TMA metabolism and determine whether TMA‐N is incorporated directly or secondarily via cross‐feeding facilitated by microbial associates. Herein, we identify two members of the marineRoseobacterclade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4+), which was subsequently used byTrichodesmiumand the rest of the community. The results implicate microbiome‐mediated carbon (C) and N transformations in modulating N2fixation and thus highlight the involvement of host‐associated heterotrophs in global biogeochemical cycling.more » « less
-
Abstract Throughout the open ocean, a minimum in dissolved iron concentration (dFe) overlaps with the deep chlorophyll maximum (DCM), which marks the lower limit of the euphotic zone. Maximizing light capture in these dim waters is expected to require upregulation of Fe-bearing photosystems, further depleting dFe and possibly leading to co-limitation by both iron and light. However, this effect has not been quantified for important phytoplankton groups like Prochlorococcus, which contributes most of the productivity in the oligotrophic DCM. Here, we present culture experiments with Prochlorococcus strain MIT1214, a member of the Low Light 1 ecotype isolated from the DCM in the North Pacific subtropical gyre. Under a matrix of iron and irradiance matching those found at the DCM, the ratio of Fe to carbon in Prochlorococcus MIT1214 cells ranged from 10–40 × 10−6 mol Fe:mol C and increased with light intensity and growth rate. These results challenge theoretical models predicting highest Fe:C at lowest light intensity, and are best explained by a large photosynthetic Fe demand that is not downregulated at higher light. To sustain primary production in the DCM with the rigid Fe requirements of low-light-adapted Prochlorococcus, dFe must be recycled rapidly and at high efficiency.more » « less
-
Climate warming increasingly drives changes in large-scale ocean physics and biogeochemistry, and affects the kinetics of biological reactions. Together these factors govern phytoplankton productivity, thereby shaping the responses of ocean carbon and nutrient cycles to global change. Here we bring together results from experimental, observational and modelling studies to highlight how interactive feedbacks between warming and nutrient limitation can affect the responses of biogeochemically critical marine primary producers. The availability of many bioactive elements in seawater will be altered markedly in the future, thereby shifting resource deficiencies. These modifications to nutrient limitation when compounded by concurrent warming can change phytoplankton optimum growth temperatures and elemental use efficiencies in group-specific and nutrient-specific ways. The biogeochemical impacts of these nutrient and warming interactions reflect a distinction between the thermal reactivity of major cellular structural elements like nitrogen (N) and catalytic micronutrients like iron (Fe). Integrating the mechanistic feedbacks between warming, nutrient availability and primary productivity into Earth system models is necessary to improve confidence in projections of ocean biogeochemical cycle transformations in a changing climate.more » « less
-
In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteriaSynechococcuswill respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study,Synechococcusisolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations inSynechococcusstrains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.more » « less
-
The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacteriumSynechococcusisolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.more » « less
An official website of the United States government
