skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 4, 2025

Title: Warming and UV Radiation Alleviate the Effect of Virus Infection on the Microalga Emiliania huxleyi
ABSTRACT The marine microalgaEmiliania huxleyiis widely distributed in the surface oceans and is prone to infection by coccolithoviruses that can terminate its blooms. However, little is known about how global change factors like solar UV radiation (UVR) and ocean warming affect the host‐virus interaction. We grew the microalga at 2 temperature levels with or without the virus in the presence or absence of UVR and investigated the physiological and transcriptional responses. We showed that viral infection noticeably reduced photosynthesis and growth of the alga but was less harmful to its physiology under conditions where UVR influenced viral DNA expression. In the virus‐infected cells, the combination of UVR and warming (+4°C) led to a 13‐fold increase in photosynthetic carbon fixation rate, with warming alone contributing a change of about 5–7‐fold. This was attributed to upregulated expression of genes related to carboxylation and light‐harvesting proteins under the influence of UVR, and to warming‐reduced infectivity. In the absence of UVR, viral infection downregulated the metabolic pathways of photosynthesis and fatty acid degradation. Our results suggest that solar UV exposure in a warming ocean can reduce the severity of viral attack on this ecologically important microalga, potentially prolonging its blooms.  more » « less
Award ID(s):
1851222
PAR ID:
10559756
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley Publishing
Date Published:
Journal Name:
Plant, Cell & Environment
ISSN:
0140-7791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aureococcus anophagefferens forms a model host-virus system with the “giant virus” Kratosvirus quantuckense. Studies to define its ribocell (uninfected) and virocell (virus-infected) forms are needed as these states co-occur during algal blooms. Previously, a link between light-derived energy, virus particle production, and virocell formation was noted. We explored how the time of day (morning, midday, or late day) of virus-host contact shaped virocell ontogeny. In parallel, we explored the dependence on light-derived energy in this mixotrophic plankter by inhibiting photosystem II, testing the role of heterotrophic energy in infection dynamics. Using flow cytometry and photochemical assessments, we examined the physiology of infected cells and controls, and estimated virus particle production. We observed differences between ribocell and virocell response to treatments, including reductions in virus particle production during reduced light duration) and PSII inhibition (i.e. “forced heterotrophy”). This work demonstrates the importance of light in shaping the fate of infected cells and provides insight into factors that constrain in situ blooms. Most significantly, we show that time of the solar day when a virus and host come into contact influences viral particle production, and therefore bloom dynamics; a factor that needs to be considered in bloom modeling work. 
    more » « less
  2. Abstract Volatile Organic Compounds (VOCs) are a diverse collection of molecules critical to cell metabolism, food web interactions, and atmospheric chemistry. The eukaryotic coccolithophoreGephyrocapsa huxleyi, an abundant coastal eukaryotic phytoplankter, forms massive blooms in coastal upwelling regions, which are often terminated by viruses (EhVs).G. huxleyiproduces organosulfur VOCs such as dimethyl sulfide (DMS) and halogenated metabolites that play key roles in atmospheric chemistry. Here we resolved the role of lytic viral infection by EhV207 on VOC production of the model strainG. huxleyiCCMP374. Our analysis identified 79 VOCs significantly impacted by viral infection, particularly during cell lysis, with sulfur containing VOCs like DMS dominating the profiles. Viral lysis results in a nearly six-fold increase in VOC production and generated a previously unrecognized range of VOCs, including 15 sulfur, 22 nitrogen, 2 phosphorus, 19 oxygen and 17 halogen-containing compounds. These findings reveal that viral infection ofG. huxleyireleases VOCs which are much more diverse than previously recognized. We further show that EhV207 primarily accelerates existing metabolic processes inG. huxleyiand facilitates the release of pre-existing intracellular VOCs rather than inducing novel biochemical pathways. This wide range of VOCs may be produced on a massive scale during coccolithophore bloom-and-bust cycles, with important impacts on coastal biogeochemistry and surface ocean/atmosphere interactions. 
    more » « less
  3. ABSTRACT The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus that encodes approximately 156 genes and is highly pathogenic to a variety of larval lepidopteran insects in nature. Oral infection of larval midgut cells is initiated by the occlusion-derived virus (ODV), while secondary infection of other tissues is mediated by the budded virus (BV). Global viral gene expression has been studied in detail in BV-infected cell cultures, but studies of ODV infection in the larval midgut are limited. In this study, we examined expression of the ∼156 AcMNPV genes in Trichoplusia ni midgut tissue using a transcriptomic approach. We analyzed expression profiles of viral genes in the midgut and compared them with profiles from a T. ni cell line (Tnms42). Several viral genes ( p6.9 , orf76 , orf75 , pp31 , Ac-bro , odv-e25 , and odv-ec27 ) had high expression levels in the midgut throughout the infection. Also, the expression of genes associated with occlusion bodies ( polh and p10 ) appeared to be delayed in the midgut in comparison with the cell line. Comparisons of viral gene expression profiles revealed remarkable similarities between the midgut and cell line for most genes, although substantial differences were observed for some viral genes. These included genes associated with high level BV production ( fp-25k ), acceleration of systemic infection ( v-fgf ), and enhancement of viral movement ( arif-1/orf20 ). These differential expression patterns appear to represent specific adaptations for virus infection and transmission through the polarized cells of the lepidopteran midgut. IMPORTANCE Baculoviruses such as AcMNPV are pathogens that are natural regulators of certain insect populations. Baculovirus infections are biphasic, with a primary phase initiated by oral infection of midgut epithelial cells by occlusion-derived virus (ODV) virions and a secondary phase in which other tissues are infected by budded-virus (BV) virions. While AcMNPV infections in cultured cells have been studied extensively, comparatively little is known regarding primary infection in the midgut. In these studies, we identified gene expression patterns associated with ODV-mediated infection of the midgut in Trichoplusia ni and compared those results with prior results from BV-infected cultured cells, which simulate secondary infection. These studies provide a detailed analysis of viral gene expression patterns in the midgut, which likely represent specific viral strategies to (i) overcome or avoid host defenses in the gut and (ii) rapidly move infection from the midgut, into the hemocoel to facilitate systemic infection. 
    more » « less
  4. Abstract. Marine phytoplankton such as bloom-forming, calcite-producingcoccolithophores, are naturally exposed to solar ultraviolet radiation (UVR,280–400nm) in the ocean's upper mixed layers. Nevertheless, the effects ofincreasing carbon dioxide (CO2)-induced ocean acidification and warming have rarelybeen investigated in the presence of UVR. We examined calcification andphotosynthetic carbon fixation performance in the most cosmopolitancoccolithophorid, Emiliania huxleyi, grown under high(1000µatm, HC; pHT: 7.70) and low (400µatm,LC; pHT: 8.02) CO2 levels, at 15C,20C and 24C with or without UVR. The HCtreatment did not affect photosynthetic carbon fixation at 15C,but significantly enhanced it with increasing temperature. Exposure to UVRinhibited photosynthesis, with higher inhibition by UVA (320–395nm) thanUVB (295–320nm), except in the HC and 24C-grown cells, in whichUVB caused more inhibition than UVA. A reduced thickness of the coccolith layerin the HC-grown cells appeared to be responsible for the UV-inducedinhibition, and an increased repair rate of UVA-derived damage in theHC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition.While calcification was reduced with elevated CO2 concentration,exposure to UVB or UVA affected the process differentially, with the formerinhibiting it and the latter enhancing it. UVA-induced stimulation of calcification washigher in the HC-grown cells at 15 and 20C, whereas at24C observed enhancement was not significant. The calcificationto photosynthesis ratio (Cal∕Pho ratio) was lower in the HC treatment,and increasing temperature also lowered the value. However, at 20 and24C, exposure to UVR significantly increased the Cal∕Phoratio, especially in HC-grown cells, by up to 100%. This implies thatUVR can counteract the negative effects of the “greenhouse” treatment onthe Cal∕Pho ratio; hence, UVR may be a key stressor when considering theimpacts of future greenhouse conditions on E. huxleyi
    more » « less
  5. Abstract Orsay virus infection in the nematodeCaenorhabditis eleganspresents an opportunity to study host‐virus interactions in an easily culturable, whole‐animal host. Previously, a major limitation ofC. elegansas a model for studying antiviral immunity was the lack of viruses known to naturally infect the worm. With the 2011 discovery of the Orsay virus, a naturally occurring viral pathogen,C. eleganshas emerged as a compelling model for research on antiviral defense. From the perspective of the host, the genetic tractability ofC. elegansenables mechanistic studies of antiviral immunity while the transparency of this animal allows for the observation of subcellular processes in vivo. Preparing infective virus filtrate and performing infections can be achieved with relative ease in a laboratory setting. Moreover, several tools are available to measure the outcome of infection. Here, we describe workflows for generating infective virus filtrate, achieving reproducible infection ofC. elegans, and assessing the outcome of viral infection using molecular biology approaches and immunofluorescence. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of Orsay virus filtrate Support Protocol: SynchronizeC. elegansdevelopment by bleaching Basic Protocol 2: Orsay virus infection Basic Protocol 3: Quantification of Orsay virus RNA1/RNA2 transcript levels by qRT‐PCR Basic Protocol 4: Quantification of infection rate and fluorescence in situ hybridization (FISH) fluorescence intensity Basic Protocol 5: Immunofluorescent labeling of dsRNA in virus‐infected intestinal tissue 
    more » « less