Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cunningham, Gabriel; Mixer, Mark; Schulte, Egon (Ed.)
-
Holmsen, Kynčl and Valculescu recently conjectured that if a finite set $$X$$ with $$\ell n$$ points in $$\mathbb{R}^{d}$$ that is colored by $$m$$ different colors can be partitioned into $$n$$ subsets of $$\ell$$ points each, such that each subset contains points of at least $$d$$ different colors, then there exists such a partition of $$X$$ with the additional property that the convex hulls of the $$n$$ subsets are pairwise disjoint. We prove a continuous analogue of this conjecture, generalized so that each subset contains points of at least $$c$$ different colors, where we also allow $$c$$ to be greater than $$d$$ . Furthermore, we give lower bounds on the fraction of the points each of the subsets contains from $$c$$ different colors. For example, when $$n\geqslant 2$$ , $$d\geqslant 2$$ , $$c\geqslant d$$ with $$m\geqslant n(c-d)+d$$ are integers, and $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ are $$m$$ positive finite absolutely continuous measures on $$\mathbb{R}^{d}$$ , we prove that there exists a partition of $$\mathbb{R}^{d}$$ into $$n$$ convex pieces which equiparts the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{d-1}$$ , and in addition every piece of the partition has positive measure with respect to at least $$c$$ of the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ .more » « less
An official website of the United States government
