skip to main content


Title: An adaptive learning and control architecture for mitigating sensor and actuator attacks in connected autonomous vehicle platoons
Summary

In this paper, we develop an adaptive control algorithm for addressing security for a class of networked vehicles that comprise a formation ofhuman‐driven vehicles sharing kinematic data and an autonomous vehicle in the aft of the vehicle formation receiving data from the preceding vehicles through wireless vehicle‐to‐vehicle communication devices. Specifically, we develop an adaptive controller for mitigating time‐invariant state‐dependent adversarial sensor and actuator attacks while guaranteeing uniform ultimate boundedness of the closed‐loop networked system. Furthermore, an adaptive learning framework is presented for identifying the state space model parameters based on input‐output data. This learning technique utilizes previously stored data as well as current data to identify the system parameters using a relaxed persistence of excitation condition. The effectiveness of the proposed approach is demonstrated by an illustrative numerical example involving a platoon of connected vehicles.

 
more » « less
Award ID(s):
1851588
NSF-PAR ID:
10453799
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Adaptive Control and Signal Processing
Volume:
33
Issue:
12
ISSN:
0890-6327
Page Range / eLocation ID:
p. 1788-1802
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the Earth's rate of radiogenic heat production and (anti)neutrino luminosity from geologically relevant short‐lived radionuclides (SLR) and long‐lived radionuclides (LLR) using decay constants from the geological community, updated nuclear physics parameters, and calculations of theβspectra. We track the time evolution of the radiogenic power and luminosity of the Earth over the last 4.57 billion years, assuming an absolute abundance for the refractory elements in the silicate Earth and key volatile/refractory element ratios (e.g., Fe/Al, K/U, and Rb/Sr) to set the abundance levels for the moderately volatile elements. The relevant decays for the present‐day heat production in the Earth (19.9 ± 3.0 TW) are from40K,87Rb,147Sm,232Th,235U, and238U. Given element concentrations in kg‐element/kg‐rock and densityρin kg/m3, a simplified equation to calculate the present‐day heat production in a rock isurn:x-wiley:ggge:media:ggge22244:ggge22244-math-0001

    The radiogenic heating rate of Earth‐like material at solar system formation was some 103to 104times greater than present‐day values, largely due to decay of26Al in the silicate fraction, which was the dominant radiogenic heat source for the first10 Ma. Assuming instantaneous Earth formation, the upper bound on radiogenic energy supplied by the most powerful short‐lived radionuclide26Al (t1/2= 0.7 Ma) is 5.5×1031 J, which is comparable (within a factor of a few) to the planet's gravitational binding energy.

     
    more » « less
  2. Abstract

    Following sea‐ice retreat, surface waters of Arctic marginal seas become nutrient‐limited and subsurface chlorophyll maxima (SCM) develop below the pycnocline where nutrients and light conditions are favorable. However, the importance of these “hidden” features for regional productivity is not well constrained. Here, we use a unique combination of high‐resolution biogeochemical and physical observations collected on the Chukchi shelf in 2017 to constrain the fine‐scale structure of nutrients, O2, particles, SCM, and turbulence. We find large O2excess at middepth, identified by positive saturation () maxima of 15%–20% that unambiguously indicate significant production occurring in middepth waters. Themaxima coincided with a complete depletion of dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+). Nitracline depths aligned with SCM depths and the lowest extent ofmaxima, suggesting this horizon represents a compensation point for balanced growth and loss. Furthermore, SCM were also associated with turbulence minima and sat just above a high turbidity bottom layer where light attenuation increased significantly. Spatially, the largestmaxima were associated with high nutrient winter‐origin water masses (14.8% ± 2.4%), under a shallower pycnocline associated with seasonal melt while lower values were associated with summer‐origin water masses (7.4% ± 3.9%). Integrated O2excesses of 800–1,200 mmol m−2in regions overlying winter water are consistent with primary production rates that are 12%–40% of previously reported regional primary production. These data implicate short‐term and long‐term control of SCM and associated productivity by stratification, turbulence, light, and seasonal water mass formation, with corresponding potential for climate‐related sensitivities.

     
    more » « less
  3. Abstract

    The D‐region ionosphere (6090 km) plays an important role in long‐range communication and response to solar and space weather; however, it is difficult to directly measure with currently available technology. Very low frequency (VLF) radio remote sensing is one of the more promising approaches, using the efficient reflection of VLF waves from the D‐region. A number of VLF beacons can therefore be turned into diagnostic tools. VLF remote sensing techniques are useful and can provide global coverage, but in practice have been applied to a limited area and often on only a small number of days. In this work, we expand the use of a recently introduced machine learning based approach (Gross & Cohen, 2020,https://doi.org/10.1029/2019JA027135) to observe and model the D‐region electron density using VLF transmitting beacons and receivers. We have extended the model to cover nighttime in addition to daytime, and have applied it to track D‐region waveguide parameters, h’ and, over 400 daytimes and 150 nighttimes on up to 21 transmitter‐receiver paths across the continental US. Using an exponential fit, h’ represents the height of the ionosphere andrepresents the slope of the electron density. Using this data set, we quantify diurnal, daily and seasonal variations of the D‐region ionosphere for both daytime and nighttime D‐region ionosphere. We show that our model identifies expected variations, as well as producing results in line with other previous studies. Additionally, we show that our daytime predictions exhibit a larger autocorrelation at higher time lags than our nighttime predictions, indicating a model with persistence may perform better.

     
    more » « less
  4. Abstract

    According to recent field studies, almost half of the New Particle Formation (NPF) events occur aloft, in a residual layer, near the top of the boundary layer. Therefore, measurements of the meteorological parameters, precursor gas concentrations, and aerosol loadings conducted at the ground level are often not representative of the conditions where the NPFs take place. This paper presents new measurements obtained during the Turbulent Flux Measurements of the Residual Layer Nucleation Particles, conducted at the Southern Great Plains research site. Vertical turbulent fluxes of 3–10 nm‐sized particles were measured using a sonic anemometer and two condensation particle counters with nominal cutoff diameters of3 nm and10 nm mounted at the top of the 10‐m telescoping tower. Aerosol number size distribution (5–300 nm) was determined through the ground‐based Scanning Mobility Particle Sizers. The size selected (15–50 nm) particle hygroscopicity was derived with the Humidified Tandem Differential Mobility Analyzer. The ground level observations were supplemented by vertically‐resolved measurements of horizontal and vertical wind speeds and aerosol backscatter. The data analysis suggests that (a) turbulent flux measurements of 3–10 nm particles can distinguish between near‐surface and residual‐layer small particle events; (b) sub‐50 nm particles had a hygroscopicity value of 0.2, suggesting that organic compounds dominate atmospheric nanoparticle chemical composition at the site; and (c) current methodologies are inadequate for estimating the dry deposition velocity of sub‐10 nm particles because it is not feasible to measure particle concentration very near the surface, in the diffusion sublayer.

     
    more » « less
  5. Abstract

    A MnIIIspin crossover complex with atypical two‐step hysteretic thermal switching at 74 K and 84 K shows rich structural–magnetic interplay and magnetic‐field‐induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X‐ray and magnetization measurements. An unusual intermediate phase containing four individual sites, whereare in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry‐breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low‐temperature phase with two inequivalent low‐spin sites. The coupling between the order parameters is identified in the framework of Landau theory.

     
    more » « less