skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1853478

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seasonal migrations are a widespread and broadly successful strategy for animals to exploit periodic and localized resources over large spatial scales. It remains an open and largely case-specific question whether long-distance migrations are resilient to environmental disruptions. High levels of mobility suggest an ability to shift ranges that can confer resilience. On the other hand, a conservative, hard-wired commitment to a risky behavior can be costly if conditions change. Mechanisms that contribute to migration include identification and responsiveness to resources, sociality, and cognitive processes such as spatial memory and learning. Our goal was to explore the extent to which these factors interact not only to maintain a migratory behavior but also to provide resilience against environmental changes. We develop a diffusion-advection model of animal movement in which an endogenous migratory behavior is modified by recent experiences via a memory process, and animals have a social swarming-like behavior over a range of spatial scales. We found that this relatively simple framework was able to adapt to a stable, seasonal resource dynamic under a broad range of parameter values. Furthermore, the model was able to acquire an adaptive migration behavior with time. However, the resilience of the process depended on all the parameters under consideration, with many complex trade-offs. For example, the spatial scale of sociality needed to be large enough to capture changes in the resource, but not so large that the acquired collective information was overly diluted. A long-term reference memory was important for hedging against a highly stochastic process, but a higher weighting of more recent memory was needed for adapting to directional changes in resource phenology. Our model provides a general and versatile framework for exploring the interaction of memory, movement, social and resource dynamics, even as environmental conditions globally are undergoing rapid change. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    We analyze a reaction-diffusion system modeling the competition of multiple phytoplankton species which are limited only by light. While the dynamics of a single species has been well studied, the dynamics of the twospecies model has only begun to be understood with the recent establishment of a comparison principle. In this paper, we show that the competition of N similar phytoplankton species, for any number N, generically leads to competitive exclusion. The main tool is the theory of a normalized principal bundle for linear parabolic equations. 
    more » « less
  5. In this article, we study how the rates of diffusion in a reaction-diffusion model for a stage structured population in a heterogeneous environment affect the model’s predictions of persistence or extinction for the population. In the case of a population without stage structure, faster diffusion is typically detrimental. In contrast to that, we find that, in a stage structured population, it can be either detrimental or helpful. If the regions where adults can reproduce are the same as those where juveniles can mature, typically slower diffusion will be favored, but if those regions are separated, then faster diffusion may be favored. Our analysis consists primarily of estimates of principal eigenvalues of the linearized system around ( 0 , 0 ) and results on their asymptotic behavior for large or small diffusion rates. The model we study is not in general a cooperative system, but if adults only compete with other adults and juveniles with other juveniles, then it is. In that case, the general theory of cooperative systems implies that, when the model predicts persistence, it has a unique positive equilibrium. We derive some results on the asymptotic behavior of the positive equilibrium for small diffusion and for large adult reproductive rates in that case. 
    more » « less