Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> We make progress in understanding the geometry associated to the Generalized Toric Polygons (GTPs) encoding the Physics of 5d Superconformal Field Theories (SCFTs), by exploiting the connection between Hanany-Witten transitions and the mathematical notion of polytope mutations. From this correspondence, it follows that the singular geometry associated to a GTP is identical to that obtained by regarding it as a standard toric diagram, but with some of its resolutions frozen in way that can be determined from the invariance of the so-called period under mutations. We propose the invariance of the period as a new criterion for distinguishing inequivalent brane webs, which allows us to resolve a puzzle posed in the literature. A second mutation invariant is the Hilbert Series of the geometry. We employ this invariant to perform quantitative checks of our ideas by computing the Hilbert Series of the BPS quivers associated to theories related by mutation. Lastly, we discuss the physical interpretation of a mathematical result ensuring the existence of a flat fibration over ℙ1interpolating between geometries connected by mutation, which we identify with recently introduced deformations of the corresponding BPS quivers.more » « less
-
A<sc>bstract</sc> We introduce a class of 4-dimensional crystal melting models that count the BPS bound state of branes on toric Calabi-Yau 4-folds. The crystalline structure is determined by the brane brick model associated to the Calabi-Yau 4-fold under consideration or, equivalently, its dual periodic quiver. The crystals provide a discretized version of the underlying toric geometries. We introduce various techniques to visualize crystals and their melting configurations, including 3-dimensional slicing and Hasse diagrams. We illustrate the construction with the D0-D8 system on$${\mathbb{C}}$$4. Finally, we outline how our proposal generalizes to arbitrary toric CY 4-folds and general brane configurations.more » « less
-
A<sc>bstract</sc> We investigate a class of mass deformations that connect pairs of 2d(0,2) gauge theories associated to different toric Calabi-Yau 4-folds. These deformations are generalizations to 2dof the well-known Klebanov-Witten deformation relating the 4dgauge theories for the ℂ2/ℤ2× ℂ orbifold and the conifold. We investigate various aspects of these deformations, including their connection to brane brick models and the relation between the change in the geometry and the pattern of symmetry breaking triggered by the deformation. We also explore how the volume of the Sasaki-Einstein 7-manifold at the base of the Calabi-Yau 4-fold varies under deformation, which leads us to conjecture that it quantifies the number of degrees of freedom of the gauge theory and its dependence on the RG scale.more » « less
-
A bstract We propose a unified perspective on two sets of objects that usually arise in the study of bipartite field theories. Each of the sets consists of a polytope, or equivalently a toric Calabi-Yau, and a quiver theory. We refer to the two sets of objects as original and twin. In the simplest cases, the two sides of the correspondence are connected by the graph operation known as untwisting. The democratic treatment that we advocate raises new questions regarding the connections between these objects, some of which we explore. With this motivation in mind, we establish a correspondence between the mutations of the original polytope and the twin quiver. This leads us to propose that non-toric twin quivers are naturally associated to generalized toric polygons (GTPs) and we explore various aspects of this idea. Supporting evidence includes global symmetries, the ability of twin quivers to encode the generalized s -rule, and the connection between the mutations of polytopes and of configurations of webs of 5-branes suspended from 7-branes. We introduce three methods for constructing twin quivers for GTPs. We also investigate the connection between twin quivers obtained using different toric phases. Twin quivers provide a powerful new perspective on GTPs. The ideas presented in this paper may represent a step towards the generalization of brane tilings to GTPs.more » « less
-
A bstract The 2 d (0 , 2) supersymmetric gauge theories corresponding to the classes of Y p,k (ℂℙ 1 × ℂℙ 1 ) and Y p,k (ℂℙ 2 ) manifolds are identified. The complex cones over these Sasaki-Einstein 7-manifolds are non-compact toric Calabi-Yau 4-folds. These infinite families of geometries are the largest ones for Sasaki-Einstein 7-manifolds whose metrics, toric diagrams, and volume functions are known explicitly. This work therefore presents the largest list of 2 d (0 , 2) supersymmetric gauge theories corresponding to Calabi-Yau 4-folds with known metrics.more » « less
-
A bstract Recently, the first instance of a model of D-branes at Calabi-Yau singularities where supersymmetry is broken dynamically into stable vacua has been proposed. This construction was based on a system of N regular and M = 1 fractional branes placed at the tip of the so-called (orientifolded) Octagon singularity. In this paper we show that this model admits a large M generalization, having the same low energy effective dynamics. This opens up the possibility that the effect on geometry is smooth, and amenable to describing the gauge theory all along the RG flow, including the deep IR, in terms of a weakly coupled gravity dual background. The relevance of this result in the wider context of the string landscape and the Swampland program is also discussed.more » « less
-
A bstract Reflexive polytopes in n dimensions have attracted much attention both in mathematics and theoretical physics due to their connection to Fano n -folds and mirror symmetry. This work focuses on the 18 regular reflexive polytopes corresponding to smooth Fano 3-folds. For the first time, we show that all 18 regular reflexive polytopes have corresponding 2 d (0 , 2) gauge theories realized by brane brick models. These 2 d gauge theories can be considered as the worldvolume theories of D1-branes probing the toric Calabi-Yau 4-singularities whose toric diagrams are given by the associated regular reflexive polytopes. The generators of the mesonic moduli space of the brane brick models are shown to form a lattice of generators due to the charges under the rank 3 mesonic flavor symmetry. It is shown that the lattice of generators is the exact polar dual reflexive polytope to the corresponding toric diagram of the brane brick model. This duality not only highlights the close relationship between the geometry and 2 d gauge theory, but also opens up pathways towards new discoveries in relation to reflexive polytopes and brane brick models.more » « less
-
A bstract We introduce and initiate the study of a general class of 2 d $$ \mathcal{N} $$ N = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT 2 ’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories.more » « less
An official website of the United States government

Full Text Available