skip to main content


Title: BFT2: a general class of 2d $$ \mathcal{N} $$ = (0, 2) theories, 3-manifolds and toric geometry
A bstract We introduce and initiate the study of a general class of 2 d $$ \mathcal{N} $$ N = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT 2 ’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories.  more » « less
Award ID(s):
1820721 1854179
NSF-PAR ID:
10387021
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Reflexive polytopes in n dimensions have attracted much attention both in mathematics and theoretical physics due to their connection to Fano n -folds and mirror symmetry. This work focuses on the 18 regular reflexive polytopes corresponding to smooth Fano 3-folds. For the first time, we show that all 18 regular reflexive polytopes have corresponding 2 d (0 , 2) gauge theories realized by brane brick models. These 2 d gauge theories can be considered as the worldvolume theories of D1-branes probing the toric Calabi-Yau 4-singularities whose toric diagrams are given by the associated regular reflexive polytopes. The generators of the mesonic moduli space of the brane brick models are shown to form a lattice of generators due to the charges under the rank 3 mesonic flavor symmetry. It is shown that the lattice of generators is the exact polar dual reflexive polytope to the corresponding toric diagram of the brane brick model. This duality not only highlights the close relationship between the geometry and 2 d gauge theory, but also opens up pathways towards new discoveries in relation to reflexive polytopes and brane brick models. 
    more » « less
  2. A bstract The 2 d (0 , 2) supersymmetric gauge theories corresponding to the classes of Y p,k (ℂℙ 1 × ℂℙ 1 ) and Y p,k (ℂℙ 2 ) manifolds are identified. The complex cones over these Sasaki-Einstein 7-manifolds are non-compact toric Calabi-Yau 4-folds. These infinite families of geometries are the largest ones for Sasaki-Einstein 7-manifolds whose metrics, toric diagrams, and volume functions are known explicitly. This work therefore presents the largest list of 2 d (0 , 2) supersymmetric gauge theories corresponding to Calabi-Yau 4-folds with known metrics. 
    more » « less
  3. A bstract We initiate the geometric engineering of 2d $$ \mathcal{N} $$ N = (0 , 1) gauge theories on D1-branes probing singularities. To do so, we introduce a new class of backgrounds obtained as quotients of Calabi-Yau 4-folds by a combination of an anti-holomorphic involution leading to a Spin(7) cone and worldsheet parity. We refer to such constructions as Spin(7) orientifolds . Spin(7) orientifolds explicitly realize the perspective on 2d $$ \mathcal{N} $$ N = (0 , 1) theories as real slices of $$ \mathcal{N} $$ N = (0 , 2) ones. Remarkably, this projection is geometrically realized as Joyce’s construction of Spin(7) manifolds via quotients of Calabi-Yau 4-folds by anti-holomorphic involutions. We illustrate this construction in numerous examples with both orbifold and non-orbifold parent singularities, discuss the role of the choice of vector structure in the orientifold quotient, and study partial resolutions. 
    more » « less
  4. null (Ed.)
    A bstract The open string sector of the topological B-model on CY ( m + 2)-folds is described by m -graded quivers with superpotentials. This correspondence generalizes the connection between CY ( m + 2)-folds and gauge theories on the worldvolume of D(5 − 2 m )-branes for m = 0 , . . . , 3 to arbitrary m . In this paper we introduce the Calabi-Yau product, a new algorithm that starting from the known quiver theories for a pair of toric CY m +2 and CY n +2 produces the quiver theory for a related CY m + n +3 . This method significantly supersedes existing ones, enabling the simple determination of quiver theories for geometries that were previously out of practical reach. 
    more » « less
  5. We revisit the correspondence between Calabi-Yau (CY) threefoldisolated singularities \mathbf{X} 𝐗 and five-dimensional superconformal field theories (SCFTs), which ariseat low energy in M-theory on the space-time transverse to \mathbf{X} 𝐗 .Focussing on the case of toric CY singularities, we analyze the“gauge-theory phases” of the SCFT by exploiting fiberwise M-theory/typeIIA duality. In this setup, the low-energy gauge group simply arises onstacks of coincident D6-branes wrapping 2-cycles in some ALE space oftype A_{M-1} A M − 1 fibered over a real line, and the map between the Kähler parameters of \mathbf{X} 𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs)can be read off systematically. Different type IIA “reductions” giverise to different gauge theory phases, whose existence depends on theparticular (partial) resolutions of the isolated singularity \mathbf{X} 𝐗 .We also comment on the case of non-isolated toric singularities.Incidentally, we propose a slightly modified expression for theCoulomb-branch prepotential of 5d \mathcal{N}=1 𝒩 = 1 gauge theories. 
    more » « less