Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Motivated by brain connectome datasets acquired using diffusion weighted magnetic resonance imaging (DWI), this article proposes a novel generalized Bayesian linear modeling framework with a symmetric tensor response and scalar predictors. The symmetric tensor coefficients corresponding to the scalar predictors are embedded with two features: low-rankness and group sparsity within the low-rank structure. Besides offering computational efficiency and parsimony, these two features enable identification of important “tensor nodes” and “tensor cells” significantly associated with the predictors, with characterization of uncertainty. The proposed framework is empirically investigated under various simulation settings and with a real brain connectome dataset. Theoretically, we establish that the posterior predictive density from the proposed model is “close” to the true data generating density, the closeness being measured by the Hellinger distance between these two densities, which scales at a rate very close to the finite dimensional optimal rate, depending on how the number of tensor nodes grow with the sample size.more » « less
-
Lesot, M. (Ed.)This article develops a regression framework with a symmetric tensor response and vector predictors. The existing literature involving symmetric tensor response and vector predictors proceeds by vectorizing the tensor response to a multivariate vector, thus ignoring the structural information in the tensor. A few recent approaches have proposed novel regression frameworks exploiting the structure of the symmetric tensor and assume symmetric tensor coefficients corresponding to scalar predictors to be low-rank. Although low-rank constraint on coefficient tensors are computationally efficient, they might appear to be restrictive in some real data applications. Motivated by this, we propose a novel class of regularization or shrinkage priors for the symmetric tensor coefficients. Our modeling framework a-priori expresses a symmetric tensor coefficient as sum of low rank and sparse structures, with both these structures being suitably regularized using Bayesian regularization techniques. The proposed framework allows identification of tensor nodes significantly influenced by each scalar predictor. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Empirical results in simulation studies show competitive performance of the proposed approach over its competitors.more » « less
An official website of the United States government

Full Text Available