Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The collapse of the Maya civilization in the late 1st/early 2nd millennium CE has been attributed to multiple internal and external causes including overpopulation, increased warfare, and environmental deterioration. Yet the role hurricanes may have played in the fracturing of Maya socio-political networks, site abandonment, and cultural reconfiguration remains unexplored. Here we present a 2200 yearlong hurricane record developed from sediment recovered from a flooded cenote on the northeastern Yucatan peninsula. The sediment archive contains fine grain autogenic carbonate interspersed with anomalous deposits of coarse carbonate material that we interpret as evidence of local hurricane activity. This interpretation is supported by the correlation between the multi-decadal distribution of recent coarse beds and the temporal distribution of modern regional landfalling storms. In total, this record allows us to reconstruct the variable hurricane conditions impacting the northern lowland Maya during the Late Preclassic, Classic, and Postclassic Periods. Strikingly, persistent above-average hurricane frequency between ~ 700 and 1450 CE encompasses the Maya Terminal Classic Phase, the declines of Chichén Itza, Cobá, and subsequent rise and fall of the Mayapán Confederacy. This suggests that hurricanes may have posed an additional environmental stressor necessary of consideration when examining the Postclassic transformation of northern Maya polities.more » « less
-
Abstract Sedimentary records of past hurricane activity indicate centennial‐scale periods over the past millennium with elevated hurricane activity. The search for the underlying mechanism behind these active hurricane periods is confounded by regional variations in their timing. Here, we present a new high resolution paleohurricane record from The Bahamas with a synthesis of published North Atlantic records over the past millennium. We reconstruct hurricane strikes over the past 1,050 years in sediment cores from a blue hole on Long Island in The Bahamas. Coarse‐grained deposits in these cores date to the close passage of seven hurricanes over the historical interval. We find that the intensity and angle of approach of these historical storms plays an important role in inducing storm surge near the site. Our new record indicates four active hurricane periods on Long Island that conflict with published records on neighboring islands (Andros and Abaco Island). We demonstrate these three islands do not sample the same storms despite their proximity, and we compile these reconstructions together to create the first regional compilation of annually resolved paleohurricane records in The Bahamas. Integrating our Bahamian compilation with compiled records from the U.S. coastline indicates basin‐wide increased storminess during the Medieval Warm Period. Afterward, the hurricane patterns in our Bahamian compilation match those reconstructed along the U.S. East Coast but not in the northeastern Gulf of Mexico. This disconnect may result from shifts in local environmental conditions in the North Atlantic or shifts in hurricane populations from straight‐moving to recurving storms over the past millennium.more » « less
-
Abstract Hurricanes cause substantial loss of life and resources in coastal areas. Unfortunately, historical hurricane records are too short and incomplete to capture hurricane‐climate interactions on multi‐decadal and longer timescales. Coarse‐grained, hurricane‐induced deposits preserved in blue holes in the Caribbean can provide records of past hurricane activity extending back thousands of years. Here we present a high resolution record of intense hurricane events over the past 1500 years from a blue hole on South Andros Island on the Great Bahama Bank. This record is corroborated by shorter reconstructions from cores collected at two nearby blue holes. The record contains coarse‐grained event deposits attributable to known historical hurricane strikes within age uncertainties. Over the past 1500 years, South Andros shows evidence of four active periods of hurricane activity. None of these active intervals occurred in the past 163 years. We suggest that Intertropical Convergence Zone position modulates hurricane activity on the island based on a correlation with Cariaco Basin titanium concentrations. An anomalous gap in activity on South Andros Island in the early 13th century corresponds to a period of increased volcanism. The patterns of hurricane activity reconstructed from South Andros Island closely match those from the northeastern Gulf of Mexico but are anti‐phased with records from New England. We suggest that either changes in local environmental conditions (e.g., SSTs) or a northeastward shift in storm tracks can account for the increased activity in the western North Atlantic when the Gulf of Mexico and southeastern Caribbean are less active.more » « less
-
Abstract Analyses of two high-resolution reanalysis products show that high values of hurricane potential intensity (PI) are becoming more frequent and covering a larger area of the Atlantic, which is consistent with the lengthening of the tropical cyclone season previously reported. These changes are especially pronounced during the early months of the storm season (May–July) in subtropical latitudes. The western subtropical Atlantic features increases in mean PI as well as the areal coverage and frequency of high PI throughout the storm season; the length of the season with high PI has grown since 1980. The number of days with low vertical wind shear increases in the tropical North Atlantic during the early and middle months of the storm season, but trends are mixed and generally insignificant elsewhere. A thermodynamic parameter measuring the ratio of midlevel entropy deficits to the strength of surface fluxes that work to eliminate them is sensitive to the choice of the pressure level(s) used to calculate its value in the boundary layer, as well as to subtle differences in temperature and humidity values near the surface in different reanalysis datasets, leading to divergent results in metrics like the ventilation index that depend on its value. Projections from a high-resolution simulation of the remainder of the twenty-first century show that the number of days with high PI is likely to continue increasing in the North Atlantic basin, with trends especially strong in the western subtropical Atlantic during the early and late months of the season.more » « less
-
null (Ed.)Abstract The tracks, intensities, and other properties of tropical cyclones downscaled from three models’ simulations of the Last Glacial Maximum (LGM) are analyzed and compared to those of storms downscaled from simulations of the present climate. Globally, the mean maximum intensity of storms generated from each model is lower at LGM, as is the fraction of all storms that reach intensities of category 4 or higher on the Saffir–Simpson hurricane wind scale. The median day of the storm season shifts earlier by an average of one week in all three models in both hemispheres. Two of the three models’ LGM simulations feature a reduction in storm count and global power dissipation index compared to the current climate, but a third shows no significant difference between the two climates. Although each model is forced by the same global changes, differences in the way sea surface temperatures and other large-scale environmental conditions respond in the North Atlantic impart significant differences in the climatology at LGM between models. Our results from the cold LGM provide a novel opportunity to assess how tropical cyclones respond to climate changes.more » « less
An official website of the United States government
