skip to main content


Title: Changes in the Length of the Season with Favorable Environmental Conditions for Tropical Cyclones in the North Atlantic Basin during the Last 40 Years
Abstract Analyses of two high-resolution reanalysis products show that high values of hurricane potential intensity (PI) are becoming more frequent and covering a larger area of the Atlantic, which is consistent with the lengthening of the tropical cyclone season previously reported. These changes are especially pronounced during the early months of the storm season (May–July) in subtropical latitudes. The western subtropical Atlantic features increases in mean PI as well as the areal coverage and frequency of high PI throughout the storm season; the length of the season with high PI has grown since 1980. The number of days with low vertical wind shear increases in the tropical North Atlantic during the early and middle months of the storm season, but trends are mixed and generally insignificant elsewhere. A thermodynamic parameter measuring the ratio of midlevel entropy deficits to the strength of surface fluxes that work to eliminate them is sensitive to the choice of the pressure level(s) used to calculate its value in the boundary layer, as well as to subtle differences in temperature and humidity values near the surface in different reanalysis datasets, leading to divergent results in metrics like the ventilation index that depend on its value. Projections from a high-resolution simulation of the remainder of the twenty-first century show that the number of days with high PI is likely to continue increasing in the North Atlantic basin, with trends especially strong in the western subtropical Atlantic during the early and late months of the season.  more » « less
Award ID(s):
1854917
NSF-PAR ID:
10416805
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
16
ISSN:
0894-8755
Page Range / eLocation ID:
5237 to 5256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dust mass concentrations have been measured daily at Miami, Florida, in the summer months, and biweekly throughout the remaining months, since 1974. The 43‐year record of dust mass concentrations indicate large daily, seasonal, and interannual variations, with most of the dust arriving within 5–8 episodes each summer. On average, dust arrives to Miami, Florida, 10 days after emission from North Africa, with measured concentrations depending on characteristics of the lower free‐tropospheric winds due to the vast travel distance. Daily dust mass concentrations from July and August, the months that contribute the most to the annual mean, are used to characterize the synoptic conditions most favorable for dust transport. Two key regions are linked with the highest daily dust mass concentrations above Miami: (i) easterly winds, averaged over 850–500 mb, over the Tropical West Atlantic [15–25°N, 45–80°W], and (ii) southerly winds, similarly averaged, over the Florida Peninsula [20–30°N,75–80°W]. Winds within these two regions are enhanced when the North Atlantic subtropical high is displaced south and zonally elongated, relocating the western edge over Florida. A dust‐transport‐efficiency index, based on the maximum potential for dust to arrive above Miami with limited loss to deposition or mixing, identifies high‐dust loading cases on the subseasonal scale. Monthly dust‐transport‐efficiency values agree well with the monthly dust trends over the 43‐year time span. While seasonal dust loadings have been decreasing over Florida in the past decade, the transport efficiency has been increasing, possibly due to trends in the North Atlantic subtropical high.

     
    more » « less
  2. Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical dry zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population. 
    more » « less
  3. Abstract

    The northeastern United States (NEUS) is a densely populated region with a number of major cities along the climatological storm track. Despite its economic and social importance, as well as the area’s vulnerability to flooding, there is significant uncertainty around future trends in extreme precipitation over the region. Here, we undertake a regional study of the projected changes in extreme precipitation over the NEUS through the end of the twenty-first century using an ensemble of high-resolution, dynamically downscaled simulations from the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) project. We find that extreme precipitation increases throughout the region, with the largest changes in coastal regions and smaller changes inland. These increases are seen throughout the year, although the smallest changes in extreme precipitation are seen in the summer, in contrast to earlier studies. The frequency of heavy precipitation also increases such that there are relatively fewer days with moderate precipitation and relatively more days with either no or strong precipitation. Averaged over the region, extreme precipitation increases by +3%–5% °C−1of local warming, with the largest fractional increases in southern and inland regions and occurring during the winter and spring seasons. This is lower than the +7% °C−1rate expected from thermodynamic considerations alone and suggests that dynamical changes damp the increases in extreme precipitation. These changes are qualitatively robust across ensemble members, although there is notable intermodel spread associated with models’ climate sensitivity and with changes in mean precipitation. Together, the NA-CORDEX simulations suggest that this densely populated region may require significant adaptation strategies to cope with the increase in extreme precipitation expected at the end of the next century.

    Significance Statement

    Observations show that the northeastern United States has already experienced increases in extreme precipitation, and prior modeling studies suggest that this trend is expected to continue through the end of the century. Using high-resolution climate model simulations, we find that coastal regions will experience large increases in extreme precipitation (+6.0–7.5 mm day−1), although there is significant intermodel spread in the trends’ spatial distribution and in their seasonality. Regionally averaged, extreme precipitation will increase at a rate of ∼2% decade−1. Our results also suggest that the frequency of extreme precipitation will increase, with the strongest storms doubling in frequency per degree of warming. These results, taken with earlier studies, provide guidance to aid in resiliency preparation and planning by regional stakeholders.

     
    more » « less
  4. Abstract

    The western North-Atlantic coast experienced major coastal floods in recent years. Coastal floods are primarily composed of tides and storm surges due to tropical (TCs) and extra-tropical cyclones (ETCs). We present a reanalysis from 1988 to 2015 of extreme sea levels that explicitly include TCs for the western North-Atlantic coastline. Validation shows a good agreement between modeled and observed sea levels and demonstrates that the framework can capture large-scale variability in extreme sea levels. We apply the 28-year reanalysis to analyze spatiotemporal patterns. Along the US Atlantic coasts the contribution of tides can be significant, with the average contribution of tides during the 10 largest events up to 55% in some locations, whereas along the Mexican Southern Gulf coast, the average contribution of tides over the largest 10 events is generally below 25%. At the US Atlantic coast, ETCs are responsible for 8.5 out of the 10 largest extreme events, whereas at the Gulf Coast and Caribbean TCs dominate. During the TC season more TC-driven events exceed a 10-year return period. During winter, there is a peak in ETC-driven events. Future research directions include coupling the framework with synthetic tropical cyclone tracks and extension to the global scale.

     
    more » « less
  5. null (Ed.)
    The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean models and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as a control mechanism on the basin-wide AMOC, with implications for convective activity in the North Atlantic and Northern Hemisphere climate. International Ocean Discovery Program (IODP) Expedition 361 aims to extend this work to periods of major ocean and climate restructuring during the Pliocene/Pleistocene to assess the role that the Agulhas Current and ensuing (interocean) marine heat and salt transports have played in shaping the regional- and global-scale ocean and climate development. This expedition will core six sites on the southeast African margin and Indian–Atlantic ocean gateway. The primary sites are located between 416 and 3040 m water depths. The specific scientific objectives are • To assess the sensitivity of the Agulhas Current to changing climates of the Pliocene/Pleistocene, in association with transient to long-term changes of high-latitude climates, tropical heat budgets, and the monsoon system; • To reconstruct the dynamics of the Indian–Atlantic gateway circulation during such climate changes, in association with changing wind fields and migrating ocean fronts; • To examine the connection between Agulhas leakage and ensuing buoyancy transfer and shifts of the AMOC during major ocean and climate reorganizations during at least the last 5 My; and • To address the impact of Agulhas variability on southern Africa terrestrial climates and, notably, rainfall patterns and river runoff. Additionally, Expedition 361 will complete an intensive interstitial fluids program at four of the sites aimed at constraining the temperature, salinity, and density structure of the Last Glacial Maximum (LGM) deep ocean, from the bottom of the ocean to the base of the main thermocline, to address the processes that could fill the LGM ocean and control its circulation. Expedition 361 will seek to recover ~5200 m of sediment in total. The coring strategy will include the triple advanced piston corer system along with the extended core barrel coring system where required to reach target depths. Given the significant transit time required during the expedition (15.5 days), the coring schedule is tight and will require detailed operational planning and flexibility from the scientific party. The final operations plan, including the number of sites to be cored and/or logged, is contingent upon the R/V JOIDES Resolution operations schedule, operational risks, and the outcome of requests for territorial permission to occupy particular sites. All relevant IODP sampling and data policies will be adhered to during the expedition. Beyond the interstitial fluids program, shipboard sampling will be restricted to acquiring ephemeral data and to limited low-resolution sampling of parameters that may be critically affected by short-term core storage. Most sampling will be deferred to a postcruise sampling party that will take place at the Gulf Coast Repository in College Station, Texas (USA). A substantial onshore X-ray fluorescence scanning plan is anticipated and will be further developed in consultation with scientific participants. 
    more » « less