skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1854956

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tropical cyclogenesis in the Atlantic is influenced by environmental parameters including vertical wind shear, which is sensitive to forcing from the tropical Pacific. Reliable projections of the response of such parameters to radiative forcing are key to understanding the future of hurricanes and coastal risk. One of the least certain aspects of future climate is the warming of the eastern tropical Pacific Ocean. Using climate model experiments isolating the warming of the eastern Pacific and controlling for other factors including El Niño‐Southern Oscillation (ENSO), changes in Atlantic tropical cyclogenesis potential by the end of this century are ∼20% lower with enhanced eastern Pacific warming. The ENSO signal in Atlantic tropical cyclogenesis potential amplifies with global warming, and that amplification is larger with enhanced eastern Pacific warming. The largest changes and dependencies on eastern Pacific warming are found in the south‐central main development region, attributable to changes in zonal overturning. 
    more » « less
  2. Abstract Tropical cyclones (TCs) cause negative sea surface temperature anomalies by vertical mixing and other processes. Such cold wakes can cover substantial areas and persist for a month or longer. It has long been hypothesized that cold wakes left behind by intense TCs reduce the likelihood of subsequent TC development. Here, we combine satellite observations, a global atmospheric model, and a high‐resolution TC downscaling model to test this hypothesis and examine the feedback of cold wakes on subsequent TC tracks and intensities. Overall, cold wakes reduce the frequency of weak to moderate events but increase the incidence of very intense events. There is large spatial heterogeneity in the TC response, such as a southward shift of track density in response to cold wakes similar to that generated by Florence (2018). Cold wakes may be important for modeling and forecasting TCs, interpreting historical records and understanding feedbacks in a changing climate. 
    more » « less
  3. Tropical storms pose a significant risk to coastal populations, including those throughout the Caribbean and along the Atlantic and Gulf coasts of North America. The impact of climate change on tropical storms is multifaceted, and patterns of sea surface temperature (SST) change may play a role in shaping future tropical storm risk. While the SST fingerprints associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) may be uncertain, the North Atlantic Warming Hole (NAWH) and enhanced SST warming near the Gulf Stream are robust features of both past and projected future climate change. Here we use the Community Earth System Model version 2 (CESM2) to highlight the remote contributions of both of these potential SST fingerprints of AMOC decline to changes in tropical cyclone (TC) genesis potential in the Atlantic basin, and thus to uncertainty in future coastal climate risk. Both the NAWH and enhanced warming near the Gulf Stream lead to significant changes in TC genesis potential, particularly in the western North Atlantic (between Bermuda and the Bahamas), the northeastern Gulf of Mexico and the Caribbean Sea, where changes are on the order of ±10% over the full Atlantic hurricane season, with considerably stronger responses focused in the two halves of the season. Diagnosis of the Genesis Potential Index (GPI) indicates that changes in mid-tropospheric humidity and vertical wind shear are the most important factors driving these responses. The simulated changes in GPI occur in regions of considerable historical TC genesis, highlighting the need to further understand the historical and projected future patterns of SST change in the North Atlantic Ocean, including their relationship to AMOC and its potential decline. 
    more » « less
    Free, publicly-accessible full text available September 25, 2026