skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 25, 2026

Title: The Impact of AMOC SST Fingerprints on Tropical Storm Risk Along the U.S. East & Gulf Coasts and Latin America
Tropical storms pose a significant risk to coastal populations, including those throughout the Caribbean and along the Atlantic and Gulf coasts of North America. The impact of climate change on tropical storms is multifaceted, and patterns of sea surface temperature (SST) change may play a role in shaping future tropical storm risk. While the SST fingerprints associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) may be uncertain, the North Atlantic Warming Hole (NAWH) and enhanced SST warming near the Gulf Stream are robust features of both past and projected future climate change. Here we use the Community Earth System Model version 2 (CESM2) to highlight the remote contributions of both of these potential SST fingerprints of AMOC decline to changes in tropical cyclone (TC) genesis potential in the Atlantic basin, and thus to uncertainty in future coastal climate risk. Both the NAWH and enhanced warming near the Gulf Stream lead to significant changes in TC genesis potential, particularly in the western North Atlantic (between Bermuda and the Bahamas), the northeastern Gulf of Mexico and the Caribbean Sea, where changes are on the order of ±10% over the full Atlantic hurricane season, with considerably stronger responses focused in the two halves of the season. Diagnosis of the Genesis Potential Index (GPI) indicates that changes in mid-tropospheric humidity and vertical wind shear are the most important factors driving these responses. The simulated changes in GPI occur in regions of considerable historical TC genesis, highlighting the need to further understand the historical and projected future patterns of SST change in the North Atlantic Ocean, including their relationship to AMOC and its potential decline.  more » « less
Award ID(s):
1854956
PAR ID:
10638137
Author(s) / Creator(s):
; ;
Publisher / Repository:
ESS Open Archive
Date Published:
Format(s):
Medium: X
Institution:
ESS Open Archive
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Genesis potential indices (GPIs) are widely used to understand the climatology of tropical cyclones (TCs). However, the sign of projected future changes depends on how they incorporate environmental moisture. Recent theory combines potential intensity and midtropospheric moisture into a single quantity called the ventilated potential intensity, which removes this ambiguity. This work proposes a new GPI (GPIυ) that is proportional to the product of the ventilated potential intensity and the absolute vorticity raised to a power. This power is estimated to be approximately 5 by fitting observed tropical cyclone best track and ECMWF Reanalysis v5 (ERA5) data. Fitting the model with separate exponents yields nearly identical values, indicating that their product likely constitutes a single joint parameter. Likewise, results are nearly identical for a Poisson model as for the power law. GPIυperforms comparably well to existing indices in reproducing the climatological distribution of tropical cyclone genesis and its covariability with El Niño–Southern Oscillation, while only requiring a single fitting exponent. When applied to phase 6 of the Coupled Model Intercomparison Project (CMIP6) projections, GPIυpredicts that environments globally will become gradually more favorable for TC genesis with warming, consistent with prior work based on the normalized entropy deficit, though significant changes emerge only at higher latitudes under relatively strong warming. The GPIυhelps resolve the debate over the treatment of the moisture term and its implication for changes in TC genesis favorability with warming, and its clearer physical interpretation may offer a step forward toward a theory for genesis across climate states. Significance StatementTropical cyclones cause significant human impacts globally, yet we currently do not understand what controls the number of storms that form each year. Tropical cyclone formation depends on fine-scale processes that our climate models cannot capture. Thus, it is common to use parameters from the background environment to represent regions favorable for cyclone formation. However, there are a variety of formulations because the link between environment and cyclone formation is complicated. This work proposes a new method that unifies a few common formulations, which helps resolve a divergence in current explanations of how tropical cyclone formation may change under climate change. 
    more » « less
  2. Changes to the tropical eastern North Pacific Intraseasonal Oscillation (ISO) at the end of the 21st century and implications for tropical cyclone (TC) genesis are examined in the Shared Socioeconomic Pathways (SSP585) scenario of the Coupled Model Intercomparison Project phase 6 (CMIP6) data set. Multimodel mean composite low-level wind and precipitation anomalies associated with the leading intraseasonal mode indicate that precipitation amplitude increases while wind amplitude weakens under global warming, consistent with previous studies for the Indo-Pacific warm pool. The eastern North Pacific intraseasonal precipitation/wind pattern also tends to shift southwestward in a warmer climate, associated with weaker positive precipitation anomalies near the coast of Mexico and Central America during the enhanced convection/westerly wind phase. Implications for the modulation of TC genesis by the leading intraseasonal mode are then explored using an empirical genesis potential index (GPI). In the historical simulation, GPI shows positive anomalies in the eastern North Pacific in the convectively enhanced phase of the ISO. The ISO’s modulation of GPI weakens near the coast of Mexico and Central America with warming, associated with a southward shift of GPI anomalies. Further examination of the contribution from individual environmental variables that enter the GPI shows that relative humidity and vorticity changes during ISO events weaken positive GPI anomalies near the Mexican coast with warming and make genesis more favorable to the southwest. The impact of vertical shear anomaly changes is also to favor genesis away from the coast. These results suggest a weaker modulation of TCs near the Mexican Coast by the ISO in a warmer climate. 
    more » « less
  3. Abstract Interconnections between ocean basins are recognized as an important driver of climate variability. Recent modeling evidence suggests that the North Atlantic climate can respond to persistent warming of the tropical Indian Ocean sea surface temperature (SST) relative to the rest of the tropics (rTIO). Here, we use observational data to demonstrate that multi-decadal changes in pantropical ocean temperature gradients lead to variations of an SST-based proxy of the Atlantic Meridional Overturning Circulation (AMOC). The largest contribution to this temperature gradient-AMOCconnection comes from gradients between the Indian and Atlantic Oceans. TherTIOindex yields the strongest connection of this tropical temperature gradient to theAMOC. Focusing on the internally generated signal in three observational products reveals that an SST-basedAMOCproxy index has closely followed low-frequency changes ofrTIOtemperature with about 26-year lag since 1870. Analyzing the pre-industrial control simulations of 44 CMIP6 climate models shows that theAMOCproxy index lags simulated mid-latitudeAMOCvariations by 4 ± 4 years. These model simulations reveal the mechanism connectingAMOCvariations to pantropical ocean temperature gradients at a 27 ± 2 years lag, matching the observed time lag in 28 out of the 44 analyzed models. rTIO temperature changes affect the North Atlantic climate through atmospheric planetary waves, impacting temperature and salinity in the subpolar North Atlantic, which modifies deep convection and ultimately the AMOC. Through this mechanism, observed internalrTIOvariations can serve as a multi-decadal precursor ofAMOCchanges with important implications forAMOCdynamics and predictability. 
    more » « less
  4. The high rate of biological productivity in the North Atlantic is stimulated by the advective supply of nutrients into the region via the Gulf Stream (nutrient stream). It has been proposed that the projected future decline in the Atlantic Meridional Overturning Circulation (AMOC) will cause a reduction in nutrient supply and resulting productivity. In this work, we examine how the nutrient stream changed over the Younger Dryas climate reversal that marked the transition out of the last ice age. Gulf Stream nutrient content decreased, and oxygen content increased at the Florida Straits during this time of weakened AMOC. The decreased nutrient stream was accompanied by a reduction in biological productivity at higher latitudes in the North Atlantic, which supports the link postulated in theoretical and modeling studies. 
    more » « less
  5. Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components. 
    more » « less