skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1855174

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We experimentally demonstrate that we can detect correlated errors in a twin-field quantum key distribution (TFQKD) system by using a technique that is related to self-consistent tomography. We implement a TFQKD system based on a fiber-Sagnac loop, in which Alice and Bob encode information in the phase of weak coherent states that propagate in opposite directions around the loop. These states interfere as they exit the loop and are detected by a third party, Charlie, who reports the results of their measurements to Alice and Bob. We find that it is possible for Alice and Bob to detect correlated state-preparation and measurement errors while trusting only their own individual states, and without trusting Charlie’s measurements. 
    more » « less
  2. We describe a technique for simultaneously determining both the state of a quantum system and the positive value operator measure that describes a detector, while making a minimum of assumptions about each of them. 
    more » « less
  3. We demonstrate that loop state-preparation-and-measurement tomography is capable of detecting nonlocal correlated errors by catching Bob as he tries to fake a Bell-inequality violation while using nonlocal knowledge of Alice’s measurement settings. 
    more » « less