Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove that many seemingly simple theories have Borel complete reducts. Specifically, if a countable theory has uncountably many complete one-types, then it has a Borel complete reduct. Similarly, if $Th(M)$ is not small, then $$M^{eq}$$ has a Borel complete reduct, and if a theory T is not $$\omega $$ -stable, then the elementary diagram of some countable model of T has a Borel complete reduct.more » « less
-
Abstract We show that if a countable structure M in a finite relational language is not cellular, then there is an age-preserving $$N \supseteq M$$ such that $$2^{\aleph _0}$$ many structures are bi-embeddable with N . The proof proceeds by a case division based on mutual algebraicity.more » « less
-
We consider several ways of decomposing models into parts of bounded size forming a congruence over a base, and show that admitting any such decomposition is equivalent to mutual algebraicity at the level of theories. We also show that a theory T T is mutually algebraic if and only if there is a uniform bound on the number of coordinate-wise non-algebraic types over every model, regardless of its cardinality.more » « less
-
We give several characterizations of when a complete first-order theory T T is monadically NIP, i.e. when expansions of T T by arbitrary unary predicates do not have the independence property. The central characterization is a condition on finite satisfiability of types. Other characterizations include decompositions of models, the behavior of indiscernibles, and a forbidden configuration. As an application, we prove non-structure results for hereditary classes of finite substructures of non-monadically NIP models that eliminate quantifiers.more » « less
-
Fix a weakly minimal (i.e. superstable [Formula: see text]-rank [Formula: see text]) structure [Formula: see text]. Let [Formula: see text] be an expansion by constants for an elementary substructure, and let [Formula: see text] be an arbitrary subset of the universe [Formula: see text]. We show that all formulas in the expansion [Formula: see text] are equivalent to bounded formulas, and so [Formula: see text] is stable (or NIP) if and only if the [Formula: see text]-induced structure [Formula: see text] on [Formula: see text] is stable (or NIP). We then restrict to the case that [Formula: see text] is a pure abelian group with a weakly minimal theory, and [Formula: see text] is mutually algebraic (equivalently, weakly minimal with trivial forking). This setting encompasses most of the recent research on stable expansions of [Formula: see text]. Using various characterizations of mutual algebraicity, we give new examples of stable structures of the form [Formula: see text]. Most notably, we show that if [Formula: see text] is a weakly minimal additive subgroup of the algebraic numbers, [Formula: see text] is enumerated by a homogeneous linear recurrence relation with algebraic coefficients, and no repeated root of the characteristic polynomial of [Formula: see text] is a root of unity, then [Formula: see text] is superstable for any [Formula: see text].more » « less
-
We define an easily verifiable notion of an atomic formula having uniformly bounded arrays in a structure M. We prove that if is a complete L-theory, then T is mutually algebraic if and only if there is some model M of T for which every atomic formula has uniformly bounded arrays. Moreover, an incomplete theory T is mutually algebraic if and only if every atomic formula has uniformly bounded arrays in every model M of T.more » « less
An official website of the United States government
