We consider several ways of decomposing models into parts of bounded size forming a congruence over a base, and show that admitting any such decomposition is equivalent to mutual algebraicity at the level of theories. We also show that a theory T T is mutually algebraic if and only if there is a uniform bound on the number of coordinate-wise non-algebraic types over every model, regardless of its cardinality.
more »
« less
Uniformly Bounded Arrays and Mutually Algebraic Structures
We define an easily verifiable notion of an atomic formula having uniformly bounded arrays in a structure M. We prove that if is a complete L-theory, then T is mutually algebraic if and only if there is some model M of T for which every atomic formula has uniformly bounded arrays. Moreover, an incomplete theory T is mutually algebraic if and only if every atomic formula has uniformly bounded arrays in every model M of T.
more »
« less
- Award ID(s):
- 1855789
- PAR ID:
- 10162382
- Date Published:
- Journal Name:
- Notre Dame journal of formal logic
- Volume:
- 61
- Issue:
- 2
- ISSN:
- 0029-4527
- Page Range / eLocation ID:
- 265–282
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A quasiconformal tree T is a (compact) metric tree that is doubling and of bounded turning. We call T trivalent if every branch point of T has exactly three branches. If the set of branch points is uniformly relatively separated and uniformly relatively dense, we say that T is uniformly branching. We prove that a metric space T is quasisymmetrically equivalent to the continuum self-similar tree if and only if it is a trivalent quasiconformal tree that is uniformly branching. In particular, any two trees of this type are quasisymmetrically equivalent.more » « less
-
Fix a weakly minimal (i.e. superstable [Formula: see text]-rank [Formula: see text]) structure [Formula: see text]. Let [Formula: see text] be an expansion by constants for an elementary substructure, and let [Formula: see text] be an arbitrary subset of the universe [Formula: see text]. We show that all formulas in the expansion [Formula: see text] are equivalent to bounded formulas, and so [Formula: see text] is stable (or NIP) if and only if the [Formula: see text]-induced structure [Formula: see text] on [Formula: see text] is stable (or NIP). We then restrict to the case that [Formula: see text] is a pure abelian group with a weakly minimal theory, and [Formula: see text] is mutually algebraic (equivalently, weakly minimal with trivial forking). This setting encompasses most of the recent research on stable expansions of [Formula: see text]. Using various characterizations of mutual algebraicity, we give new examples of stable structures of the form [Formula: see text]. Most notably, we show that if [Formula: see text] is a weakly minimal additive subgroup of the algebraic numbers, [Formula: see text] is enumerated by a homogeneous linear recurrence relation with algebraic coefficients, and no repeated root of the characteristic polynomial of [Formula: see text] is a root of unity, then [Formula: see text] is superstable for any [Formula: see text].more » « less
-
Unlike minors, the induced subgraph obstructions to bounded treewidth come in a large variety, including, for every t ∈ N, the t-basic obstructions: the graphs Kt+1 and Kt,t, along with the subdivisions of the t-by-t wall and their line graphs. But this list is far from complete. The simplest example of a “non-basic” obstruction is due to Pohoata and Davies (independently). For every n ∈ N, they construct certain graphs of treewidth n and with no 3-basic obstruction as an induced subgraph, which we call n-arrays. Let us say a graph class G is clean if the only obstructions to bounded treewidth in G are in fact the basic ones. It follows that a full description of the induced subgraph obstructions to bounded treewidth is equivalent to a characterization of all families H of graphs for which the class of all H-free graphs is clean (a graph G is H-free if no induced subgraph of G is isomorphic to any graph in H). This remains elusive, but there is an immediate necessary condition: if H-free graphs are clean, then there are only finitely many n ∈ N such that there is an n-array which is H-free. The above necessary condition is not sufficient in general. However, the situation turns out to be different if H is finite: we prove that for every finite set H of graphs, the class of all H-free graphs is clean if and only if there is no H-free n-array except possibly for finitely many values of n.more » « less
-
Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. Motivated by several recent studies of local graph algorithms, we consider the following variant of this problem. Let G be a connected bounded-degree graph. Given an edge e in G we would like to decide whether e belongs to a connected subgraph math formula consisting of math formula edges (for a prespecified constant math formula), where the decision for different edges should be consistent with the same subgraph math formula. Can this task be performed by inspecting only a constant number of edges in G? Our main results are: We show that if every t-vertex subgraph of G has expansion math formula then one can (deterministically) construct a sparse spanning subgraph math formula of G using few inspections. To this end we analyze a “local” version of a famous minimum-weight spanning tree algorithm. We show that the above expansion requirement is sharp even when allowing randomization. To this end we construct a family of 3-regular graphs of high girth, in which every t-vertex subgraph has expansion math formula. We prove that for this family of graphs, any local algorithm for the sparse spanning graph problem requires inspecting a number of edges which is proportional to the girth.more » « less
An official website of the United States government

