skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1856667

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least 7 and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways. [Brachyura; convergent evolution; crustaceans; divergence times; fossil calibration; molecular phylogeny; terrestrialization; threshold model.] 
    more » « less
  2. Abstract A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. At least five cases of convergent evolution of the crab‐like body plan (with a wide and flattened shape, and a bent abdomen) are known in decapod crustaceans, and have, for over 140 years, been known as “carcinization.” The repeated loss of this body plan has been identified as “decarcinization.” In reviewing the field, we offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the history of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab‐like body form. 
    more » « less
  3. True crabs, or Brachyura, comprise over 7,600 known species and are among the most ecologically dominant, economically significant, and popularly recognized groups of extant crustaceans. There are over 3,000 fossil brachyuran species known from mid and upper Jurassic, Cretaceous, and Cenozoic deposits across the globe, many of them preserved in exquisite detail, but their origins and early evolution remain unresolved. This uncertainty hinders the identification of the stratigraphically earliest occurrence of major brachyuran groups in the fossil record, obscuring our understanding of their phylogenetic relationships and thus the ability to estimate divergence times to answer large-scale macroevolutionary questions. We present 36 vetted fossil node calibration points for molecular phylogenetic analysis of crabs (one Anomura and 35 Brachyura) and reassess the earliest occurrences of several key clades based on recent fossil discoveries or re-examination of previous studies. For each calibrated node, we provide minimum and tip maximum ages for the stratigraphically oldest fossil that can be reliably assigned to the group. Disentangling the anatomical disparity of fossil forms and their phylogenetic relationships is crucial to recognizing the earliest branching members among brachyuran groups. This represents a critical first step in understanding the evolution of carcinization and decarcinization, the appearance of key adaptations, and the transition from sea to land and freshwater in brachyurans. The identification and critical examination of reliable fossils for deep time calibrations, both as tips and nodes, is pivotal to ensure not only precise but more accurate divergence time estimations when reconstructing the crab tree of life. 
    more » « less
  4. The Amazon–Orinoco plume (AOP) is the world’s largest freshwater and sediment discharge into the ocean. Previous studies limited to mtDNA suggest that the swimming crab Callinectes ornatus Ordway, 1863 exists as two distinct genetic clusters separated by the AOP. However, questions concerning migration, diversification time, and species delimitation are unresolved. Densely sampling markers across the genome (SNPs) could elucidate the evolutionary processes within this species. Here, we combined mtDNA data and ddRAD-seq to explore the diversification patterns and processes within the swimming crab C. ornatus. We show great genetic differentiation between groups on the north and south sides of the plume but also signs of hybridization. Demographic modeling indicates the divergence between groups starting around 8 Mya following the AOP’s formation. After a period of isolation, we detect two incidences of secondary contact with stronger migration in concordance with the North Brazil Current flow. Our results suggest speciation with gene flow explained by the interplay among the AOP, oceanographic currents, and long larval dispersal. This work represents the first investigation employing ddRAD-seq in a marine invertebrate species with distribution encompassing the north and south Atlantic and sheds light on the role of the AOP in the diversification of a marine species. 
    more » « less