skip to main content

Search for: All records

Award ID contains: 1900060

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A nontrigonal phosphorus triamide ( 1 , P{N[ o -NMe-C 6 H 4 ] 2 }) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C–H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P–N cooperative activation of HBpin by 1 to give P -hydrido diazaphospholene 2 , which is diverted by Atherton–Todd oxidation with chloroalkane to generate P -chloro diazaphospholene 3 . DFT calculations suggest subsequent oxidation of pinacolborane by 3 generates chloropinacolborane (ClBpin) as a transient electrophilic borylating species, consistent with observed substituent effects and regiochemical outcomes. These results illustrate the targeted diversion of established reaction pathways in organophosphorus catalysis to enable a new mode of main group-catalyzed C–H borylation.
  2. The synthesis and catalytic reactivity of a class of water-tolerant cationic phosphorus-based Lewis acids is reported. Corrole-based phosphorus( v ) cations of the type [ArP(cor)][B(C 6 F 5 ) 4 ] (Ar = C 6 H 5 , 3,5-(CF 3 ) 2 C 6 H 3 ; cor = 5,10,15-(C 6 H 5 ) 3 corrolato 3− , 5,10,15-(C 6 F 5 ) 3 corrolato 3− ) were synthesized and characterized by NMR and X-ray diffraction. The visible electronic absorption spectra of these cationic phosphacorroles depend strongly on the coordination environment at phosphorus, and their Lewis acidities are quantified by spectrophotometric titrations. DFT analyses establish that the character of the P-acceptor orbital comprises P–N antibonding interactions in the basal plane of the phosphacorrole. Consequently, the cationic phosphacorroles display unprecedented stability to water and alcohols while remaining highly active and robust Lewis acid catalysts for carbonyl hydrosilylation, C sp3 –H bond functionalization, and carbohydrate deoxygenation reactions.