skip to main content


Title: Organophosphorus-catalyzed relay oxidation of H-Bpin: electrophilic C–H borylation of heteroarenes
A nontrigonal phosphorus triamide ( 1 , P{N[ o -NMe-C 6 H 4 ] 2 }) is shown to catalyze C–H borylation of electron-rich heteroarenes with pinacolborane (HBpin) in the presence of a mild chloroalkane reagent. C–H borylation proceeds for a range of electron-rich heterocycles including pyrroles, indoles, and thiophenes of varied substitution. Mechanistic studies implicate an initial P–N cooperative activation of HBpin by 1 to give P -hydrido diazaphospholene 2 , which is diverted by Atherton–Todd oxidation with chloroalkane to generate P -chloro diazaphospholene 3 . DFT calculations suggest subsequent oxidation of pinacolborane by 3 generates chloropinacolborane (ClBpin) as a transient electrophilic borylating species, consistent with observed substituent effects and regiochemical outcomes. These results illustrate the targeted diversion of established reaction pathways in organophosphorus catalysis to enable a new mode of main group-catalyzed C–H borylation.  more » « less
Award ID(s):
1654122 1900060
NSF-PAR ID:
10219693
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
3
ISSN:
2041-6520
Page Range / eLocation ID:
1031 to 1037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. N,N-Diborylamines have emerged as promising reagents in organic synthesis; however, their efficient preparation and full synthetic utility have yet to be realized. To address both shortcomings, an effective catalyst for nitrile dihydroboration was sought. Heating CoCl2 in the presence of PyEtPDI afforded the six-coordinate Co(II) salt, [(PyEtPDI)CoCl][Cl]. Upon adding 2 equiv of NaEt3BH, hydride transfer to one chelate imine functionality was observed, resulting in the formation of (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Single-crystal X-ray diffraction and density functional theory calculations revealed that this compound possesses a low-spin Co(II) ground state featuring antiferromagnetic coupling to a singly reduced imino(pyridine) moiety. Importantly, (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co was found to catalyze the dihydroboration of nitriles using HBPin with turnover frequencies of up to 380 h–1 at ambient temperature. Stoichiometric addition experiments revealed that HBPin adds across the Co–Namide bond to generate a hydride intermediate that can react with additional HBPin or nitriles. Computational evaluation of the reaction coordinate revealed that the B–H addition and nitrile insertion steps occur on the antiferromagnetically coupled triplet spin manifold. Interestingly, formation of the borylimine intermediate was found to occur following BPin transfer from the borylated chelate arm to regenerate (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Borylimine reduction is in turn facile and follows the same ligand-assisted borylation pathway. The independent hydroboration of alkyl and aryl imines was also demonstrated at 25 °C. With a series of N,N-diborylamines in hand, their addition to carboxylic acids allowed for the direct synthesis of amides at 120 °C, without the need for an exogenous coupling reagent. 
    more » « less
  2. Abstract

    Biological N2reduction occurs at sulfur‐rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N2through PCET. Here, we test the feasibility of using synthetic sulfur‐supported diiron complexes to mimic this pathway. Oxidative proton transfer from μ‐η1 : η1‐diazene (HN=NH) is the microscopic reverse of the proposed N2fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two‐electron oxidation of [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2H2)] (L1=tetradentate SSSS ligand) at −78 °C as [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2)]2+, which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N2complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr3)L1}(η2‐N2H2)]+. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe3+/2+redox potential, indicating that the reverse N2protonation would be too endergonic to proceed. This system establishes the “ground rules” for designing reversible N2/N2H2interconversion through PCET, such as tuning the redox potentials of the metal sites.

     
    more » « less
  3. This article presents a retrospective account of our group’s heterobinuclear (NHC)Cu-[MCO] catalyst design concept (NHC = N-heterocyclic carbene, [MCO] = metal carbonyl anion), the discovery of its application towards UV-light-induced dehydrogenative borylation of unactivated arenes, and the subsequent pursuit of thermal reaction conditions through structural modifications of the catalysts. The account highlights advantages of using a hypothesis-driven catalyst design approach that, while often fruitless with regard to the target transformation in this case, nonetheless vastly expanded the set of heterobinuclear catalysts available for other applications. In other words, curiosity-driven research conducted in a rational manner often provides valuable products with unanticipated applications, even if the primary objective is viewed to have failed. 1 Introduction to Heterobinuclear Catalysts for C–H Borylation 2 Pursuit of Thermal Borylation Conditions 3 Catalysts beyond Copper Carbenes 4 Conclusions 
    more » « less
  4. Abstract

    The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1‐BR2‐2‐[(Me2N)2C=N]‐C6H4(36) [BR2=BMes2(3), BC12H8, (4), BBN (5), BBNO (6)] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X‐ray analysis. These novel types of pre‐organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via anortho‐phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds.4and5deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1‐(RC≡C‐BR2)‐2‐[(Me2N)2C=NH]‐C6H4(R=Ph, H) and reacted with ammonia, BnNH2and pyrrolidine, to generate the FLP adducts 1‐(R2HN→BR2)‐2‐[(Me2N)2C=NH]‐C6H4, where the N‐H functionality is activated by intramolecular H‐bond interactions. In addition,5was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise,5is capable of cleaving H2, HBPin and PhSiH3to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.

     
    more » « less
  5. Abstract

    Direct amination of C(sp3)−H bonds is of broad interest in the realm of C−H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3)−H/N−H coupling that exhibits good reactivity with both sp2and sp3N−H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light‐induced cleavage of intermediate N−I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional‐group compatibility of electrochemical C−H amination, for example, tolerating electron‐rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.

     
    more » « less