skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1900399

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We contrast Dirac’s theory of transition probabilities and the theory of nonadiabatic transition probabilities, applied to a perturbed system that is coupled to a bath. In Dirac’s analysis, the presence of an excited state |k0⟩ in the time-dependent wave function constitutes a transition. In the nonadiabatic theory, a transition occurs when the wave function develops a term that is not adiabatically connected to the initial state. Landau and Lifshitz separated Dirac’s excited-state coefficients into a term that follows the adiabatic theorem of Born and Fock and a nonadiabatic term that represents excitation across an energy gap. If the system remains coherent, the two approaches are equivalent. However, differences between the two approaches arise when coupling to a bath causes dephasing, a situation that was not treated by Dirac. For two-level model systems in static electric fields, we add relaxation terms to the Liouville equation for the time derivative of the density matrix. We contrast the results obtained from the two theories. In the analysis based on Dirac’s transition probabilities, the steady state of the system is not an equilibrium state; also, the steady-state population ρkk,s increases with increasing strength of the perturbation and its value depends on the dephasing time T2. In the nonadiabatic theory, the system evolves to the thermal equilibrium with the bath. The difference is not simply due to the choice of basis because the difference remains when the results are transformed to a common basis. 
    more » « less
  2. Using IBM's publicly accessible quantum computers, we have analyzed the entropies of Schrödinger's cat states, which have the form Ψ = (1/2) 1/2 [|0 0 0⋯0〉 + |1 1 1⋯1〉]. We have obtained the average Shannon entropy S So of the distribution over measurement outcomes from 75 runs of 8192 shots, for each of the numbers of entangled qubits, on each of the quantum computers tested. For the distribution over N fault-free measurements on pure cat states, S So would approach one as N → ∞, independent of the number of qubits; but we have found that S So varies nearly linearly with the number of qubits n . The slope of S So versus the number of qubits differs among computers with the same quantum volumes. We have developed a two-parameter model that reproduces the near-linear dependence of the entropy on the number of qubits, based on the probabilities of observing the output 0 when a qubit is set to |0〉 and 1 when it is set to |1〉. The slope increases as the error rate increases. The slope provides a sensitive measure of the accuracy of a quantum computer, so it serves as a quickly determinable index of performance. We have used tomographic methods with error mitigation as described in the qiskit documentation to find the density matrix ρ and evaluate the von Neumann entropies of the cat states. From the reduced density matrices for individual qubits, we have calculated the entanglement entropies. The reduced density matrices represent mixed states with approximately 50/50 probabilities for states |0〉 and |1〉. The entanglement entropies are very close to one. 
    more » « less
  3. null (Ed.)
    This work provides quantitative tests of the extent of violation of two inequalities applicable to qubits coupled into Bell states, using IBM's publicly accessible quantum computers. Violations of the inequalities are well established. Our purpose is not to test the inequalities, but rather to determine how well quantum mechanical predictions can be reproduced on quantum computers, given their current fault rates. We present results for the spin projections of two entangled qubits, along three axes A , B , and C , with a fixed angle θ between A and B and a range of angles θ ′ between B and C . For any classical object that can be characterized by three observables with two possible values, inequalities govern relationships among the probabilities of outcomes for the observables, taken pairwise. From set theory, these inequalities must be satisfied by all such classical objects; but quantum systems may violate the inequalities. We have detected clear-cut violations of one inequality in runs on IBM's publicly accessible quantum computers. The Clauser–Horne–Shimony–Holt (CHSH) inequality governs a linear combination S of expectation values of products of spin projections, taken pairwise. Finding S > 2 rules out local, hidden variable theories for entangled quantum systems. We obtained values of S greater than 2 in our runs prior to error mitigation. To reduce the quantitative errors, we used a modification of the error-mitigation procedure in the IBM documentation. We prepared a pair of qubits in the state |00〉, found the probabilities to observe the states |00〉, |01〉, |10〉, and |11〉 in multiple runs, and used that information to construct the first column of an error matrix M . We repeated this procedure for states prepared as |01〉, |10〉, and |11〉 to construct the full matrix M , whose inverse is the filtering matrix. After applying filtering matrices to our averaged outcomes, we have found good quantitative agreement between the quantum computer output and the quantum mechanical predictions for the extent of violation of both inequalities as functions of θ ′. 
    more » « less