skip to main content


Title: Nonadiabatic transition probabilities for quantum systems in electromagnetic fields: Dephasing and population relaxation due to contact with a bath
We contrast Dirac’s theory of transition probabilities and the theory of nonadiabatic transition probabilities, applied to a perturbed system that is coupled to a bath. In Dirac’s analysis, the presence of an excited state |k0⟩ in the time-dependent wave function constitutes a transition. In the nonadiabatic theory, a transition occurs when the wave function develops a term that is not adiabatically connected to the initial state. Landau and Lifshitz separated Dirac’s excited-state coefficients into a term that follows the adiabatic theorem of Born and Fock and a nonadiabatic term that represents excitation across an energy gap. If the system remains coherent, the two approaches are equivalent. However, differences between the two approaches arise when coupling to a bath causes dephasing, a situation that was not treated by Dirac. For two-level model systems in static electric fields, we add relaxation terms to the Liouville equation for the time derivative of the density matrix. We contrast the results obtained from the two theories. In the analysis based on Dirac’s transition probabilities, the steady state of the system is not an equilibrium state; also, the steady-state population ρkk,s increases with increasing strength of the perturbation and its value depends on the dephasing time T2. In the nonadiabatic theory, the system evolves to the thermal equilibrium with the bath. The difference is not simply due to the choice of basis because the difference remains when the results are transformed to a common basis.  more » « less
Award ID(s):
2154028 1900399
PAR ID:
10411713
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
16
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The time evolution of the purity (the trace of the square of the reduced density matrix) and von Neumann entropy in a symmetric two-level system coupled to a dissipative harmonic bath is investigated through analytical arguments and accurate path integral calculations on simple models and the singly excited bacteriochlorophyll dimer. A simple theoretical analysis establishes bounds and limiting behaviors. The contributions to purity from a purely incoherent term obtained from the diagonal elements of the reduced density matrix, a term associated with the difference of the two eigenstate populations, and a third term related to the square of the time derivative of a site population, are discussed in various regimes. In the case of tunneling dynamics from a localized initial condition, the complex interplay among these contributions leads to the recovery of purity under low-temperature, weakly dissipative conditions. Memory effects from the bath are found to play a critical role to the dynamics of purity. It is shown that the strictly quantum mechanical decoherence process associated with spontaneous phonon emission is responsible for the long-time recovery of purity. These analytical and numerical results show clearly that the loss of quantum coherence during the evolution toward equilibrium does not necessarily imply the decay of purity, and that the time scales relevant to these two processes may be entirely different. 
    more » « less
  2. Abstract Superradiance occurs in quantum optics when the emission rate of photons from multiple atoms is enhanced by inter-atom interactions. When the distance between two atoms is comparable to the emission wavelength, the atoms become entangled and their emission rate varies sinusoidally with their separation distance due to quantum interference. We here explore a theoretical model of pilot-wave hydrodynamics, wherein droplets self-propel on the surface of a vibrating bath. When a droplet is confined to a pair of hydrodynamic cavities between which it may transition unpredictably, in certain instances the system constitutes a two-level system with well-defined ground and excited states. When two such two-level systems are coupled through an intervening cavity, the probability of transition between states may be enhanced or diminished owing to the wave-mediated influence of its neighbour. Moreover, the tunneling probability varies sinusoidally with the coupling-cavity length. We thus establish a classical analog of quantum superradiance. 
    more » « less
  3. null (Ed.)
    We investigate the time evolution of the reduced density matrix (RDM) and its purity in the dynamics of a two-level system coupled to a dissipative harmonic bath, when the system is initially placed in one of its eigenstates. We point out that the symmetry of the initial condition confines the motion of the RDM elements to a one-dimensional subspace and show that the purity always goes through its maximally mixed value at some time during relaxation, but subsequently recovers and (under low-temperature, weakly dissipative conditions) can rise to values that approach unity. These behaviors are quantified through accurate path integral calculations. Under low-temperature, weakly dissipative conditions, we observe unusual, nonmonotonic population dynamics when the two-level system is initially placed in its ground state. We also analyze the origin of the system-bath interactions responsible for the nonmonotonic behavior of purity during relaxation. Our results show that classical dephasing processes arising from site level fluctuations lead to a monotonic decay of purity, and that the quantum mechanical decoherence events associated with spontaneous phonon emission are responsible for the subsequent recovery of purity. Last, we show that coupling with a low-temperature bath can purify a mixed two-level system. In the case of the maximally mixed initial RDM, the purity increases monotonically even during short time. 
    more » « less
  4. We present a numerical method to simulate nonequilibrium Floquet steady states of one-dimensional periodically driven many-body systems coupled to a dissipative bath, based on a matrix product operator ansatz for the Floquet density matrix in frequency space. This method enables access to large systems beyond the reach of exact simulations, while retaining the periodic micromotion information. An excited-state extension of this technique allows computation of the dynamical approach to the steady state. We benchmark our method with a driven-dissipative Ising model and apply it to study the possibility of stabilizing prethermal discrete time-crystalline order by coupling to a cold bath. 
    more » « less
  5. Discrete time crystals (DTC) have been demonstrated experimentally in several different quantum systems in the past few years. Spin couplings and cavity losses have been shown to play crucial roles for realizing DTC order in open many-body systems out of equilibrium. Recently, it has been proposed that eternal and transient DTC can be present with an open Floquet setup in the thermodynamic limit and in the deep quantum regime with few qubits, respectively. In this work, we consider the effects of spin damping and spin dephasing on the DTC order in spin-optomechanical and open cavity systems in which the spins can be all-to-all coupled. In the thermodynamic limit, it is shown that the existence of dephasing can destroy the coherence of the system and finally lead the system to its trivial steady state. Without dephasing, eternal DTC is displayed in the weak damping regime, which may be destroyed by increasing the all-to-all spin coupling or the spin damping. By contrast, the all-to-all coupling is constructive to the DTC in the moderate damping regime. We also focus on a model which can be experimentally realized by a suspended hexagonal boron nitride (hBN) membrane with a few spin color centers under microwave drive and Floquet magnetic field. Signatures of transient DTC behavior are demonstrated in both weak and moderate dissipation regimes without spin dephasing. Relevant experimental parameters are also discussed for realizing transient DTC order in such an hBN optomechanical system. 
    more » « less