skip to main content


Search for: All records

Award ID contains: 1900549

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. CuI catalyzes reactions of cis -(R 2 C(CH 2 PPh 2 ) 2 )Pt(CCCCH) 2 and cis -(R 2 C(CH 2 PPh 2 ) 2 )PtI 2 in secondary amine solvents HNR’ 2 to give the title adducts [(R 2 C(CH 2 PPh 2 ) 2 )Pt(CCCC)] 4 ·(H 2 NR’ 2 + I − ) n (R/R’/ n = Me/Et/1, Me/((CH 2 CH 2 ) 2 O) 0.5 /3, Et/Et/1, Et/CH 2 CHCH 2 /1; 92–42%). Crystal structures of these or closely related species establish folded Pt 4 cores containing ammonium cation guests, with NH/ and NCH/CC hydrogen bonding. DOSY NMR experiments show that the host/guest relationship can be maintained in solution. 
    more » « less
  2. Reactions of trans-[[upper bond 1 start]Fe(CO)2(NO)(As((CH2)n)3As[upper bond 1 end])]+ BF4− (n = 10, 12, 14) and Bu4N+ Cl− afford the title compounds As((CH2)n)3As, which upon reaction (n = 14) with MCl2 (M = Pt, Ni), Rh(CO)(Cl), and Fe(CO)3 sources reconstitute cage like complexes trans-[upper bond 1 start]MLn(As((CH2)14)3A[upper bond 1 end]s). Reactions with H2O2 and BH3 give the corresponding arsine oxides and boranes. Crystal structures of metal-free species reveal out,out isomers, but cage complex formation is proposed to entail homeomorphic isomerization to in,in isomers with endo directed lone pairs. 
    more » « less
  3. The diphosphine complexes cis - or trans -PtCl 2 (P((CH 2 ) n ) 3 P) ( n = b/12, c/14, d/16, e/18) are demetalated by MCX nucleophiles to give the title compounds (P((CH 2 ) n ) 3 )P (3b–e, 91–71%). These “empty cages” react with PdCl 2 or PtCl 2 sources to afford trans -MCl 2 (P((CH 2 ) n ) 3 P). Low temperature 31 P NMR spectra of 3b and c show two rapidly equilibrating species (3b, 86 : 14; 3c, 97 : 3), assigned based upon computational data to in , in (major) and out , out isomers. These interconvert by homeomorphic isomerizations, akin to turning articles of clothing inside out (3b/c: Δ H ‡ 7.3/8.2 kcal mol −1 , Δ S ‡ −19.4/−11.8 eu, minor to major). At 150 °C, 3b, c, e epimerize to (60–51) : (40–49) mixtures of ( in , in / out , out ) :  in , out isomers, which are separated via the bis(borane) adducts 3b, c, e·2BH 3 . The configurational stabilities of in , out -3b, c, e preclude phosphorus inversion in the interconversion of in , in and out , out isomers. Low temperature 31 P NMR spectra of in , out -3b, c reveal degenerate in , out / out , in homeomorphic isomerizations (Δ G ‡Tc 12.1, 8.5 kcal mol −1 ). When ( in , in / out , out )-3b, c, e are crystallized, out , out isomers are obtained, despite the preference for in , in isomers in solution. The lattice structures are analyzed, and the D 3 symmetry of out , out -3c enables a particularly favorable packing motif. Similarly, ( in , in / out , out )-3c, e·2BH 3 crystallize in out , out conformations, the former with a cycloalkane solvent guest inside. 
    more » « less
  4. Abstract

    The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 af, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 af, 97–54 %). Complexes3 adare also available from2 adand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 af; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Clare challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 afare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.

     
    more » « less
  5. The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures. 
    more » « less